Self-similar analogues of Stark ladders: a path to fractal potentials


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We treat the eigenvalue problem posed by self-similar potentials, i.e. homogeneous functions under a particular affine transformation, by means of symmetry techniques. We find that the eigenfunctions of such problems are localized, evenwhen the potential does not rise to infinity in every direction. It is shown that the logarithm of the energy displays levels contained in families that are analogous toWannier–Stark ladders. The position of each ladder is proved to be determined by the specific details of the potential and not by its transformation properties. This is done by direct computation of matrix elements. The results are compared with numerical solutions of the Schrödinger equation.

作者简介

E. Sadurní

Instituto de Física

编辑信件的主要联系方式.
Email: sadurni@ifuap.buap.mx
墨西哥, Puebla

S. Castillo

Instituto de Física

Email: sadurni@ifuap.buap.mx
墨西哥, Puebla

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017