Factorization approach to superintegrable systems: Formalism and applications
- Authors: Ballesteros Á.1, Herranz F.J.1, Kuru Ş.2, Negro J.3
-
Affiliations:
- Departamento de Física
- Department of Physics, Faculty of Science
- Departamento de Física Teórica, Atómica y Óptica
- Issue: Vol 80, No 2 (2017)
- Pages: 389-396
- Section: Elementary Particles and Fields
- URL: https://journals.rcsi.science/1063-7788/article/view/191791
- DOI: https://doi.org/10.1134/S1063778817020053
- ID: 191791
Cite item
Abstract
The factorization technique for superintegrable Hamiltonian systems is revisited and applied in order to obtain additional (higher-order) constants of the motion. In particular, the factorization approach to the classical anisotropic oscillator on the Euclidean plane is reviewed, and new classical (super) integrable anisotropic oscillators on the sphere are constructed. The Tremblay–Turbiner–Winternitz system on the Euclidean plane is also studied from this viewpoint.
About the authors
Á. Ballesteros
Departamento de Física
Author for correspondence.
Email: angelb@ubu.es
Spain, Burgos
F. J. Herranz
Departamento de Física
Email: angelb@ubu.es
Spain, Burgos
Ş. Kuru
Department of Physics, Faculty of Science
Email: angelb@ubu.es
Turkey, Ankara
J. Negro
Departamento de Física Teórica, Atómica y Óptica
Email: angelb@ubu.es
Spain, Valladolid
Supplementary files
