Symmetries of the pseudo-diffusion equation and related topics


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We show in details how to determine and identify the algebra g = {Ai} of the infinitesimal symmetry operators of the following pseudo-diffusion equation (PSDE) LQ\(\left[ {\frac{\partial }{{\partial t}} - \frac{1}{4}\left( {\frac{{{\partial ^2}}}{{\partial {x^2}}} - \frac{1}{{{t^2}}}\frac{{{\partial ^2}}}{{\partial {p^2}}}} \right)} \right]\)Q(x, p, t) = 0. This equation describes the behavior of the Q functions in the (x, p) phase space as a function of a squeeze parameter y, where t = e2y. We illustrate how Gi(λ) ≡ exp[λAi] can be used to obtain interesting solutions. We show that one of the symmetry generators, A4, acts in the (x, p) plane like the Lorentz boost in (x, t) plane. We construct the Anti-de-Sitter algebra so(3, 2) from quadratic products of 4 of the Ai, which makes it the invariance algebra of the PSDE. We also discuss the unusual contraction of so(3, 1) to so(1, 1)∌ h2. We show that the spherical Bessel functions I0(z) and K0(z) yield solutions of the PSDE, where z is scaling and “twist” invariant.

作者简介

J. Daboul

Physics Department

编辑信件的主要联系方式.
Email: daboul@bgu.ac.il
以色列, Beer Sheva

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017