Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σp) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity Vc (separating the damage and fragmentation regions) is a power function of σp and h/D. In the supercritical region (V > Vc), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σp. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σp. Average masses of the largest fragments are also scale-invariant at V > Vc, but only with respect to variable parameter σp.

Sobre autores

N. Myagkov

Institute of Applied Mechanics

Autor responsável pela correspondência
Email: nn_myagkov@mail.ru
Rússia, Moscow, 125040

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2017