


Vol 126, No 2 (2018)
- Year: 2018
- Articles: 15
- URL: https://journals.rcsi.science/1063-7761/issue/view/12106
Atoms, Molecules, Optics
Dynamics of a Dipolariton Optical Parametric Oscillator in a Semiconductor Microcavity
Abstract
The dynamics of dipolariton states in a planar microcavity has been studied upon pumping of a state corresponding to the middle dipolariton branch. It has been shown that, under exact resonance conditions, both periodic and aperiodic regimes of conversion of pump dipolaritons to dipolaritons of idler and signal modes occur. The periodic regime of conversion of signal and idler dipolaritons without involving pump dipolaritons on the middle branch has also been analyzed.



Method for Describing the Angular Distribution of Optical Radiation Scattered by a Monolayer of Ordered Spherical Particles (Normal Illumination)
Abstract
We have developed a method for describing the angular distribution of intensity of radiation scattered by a monolayer of homogeneous spatially ordered monodisperse spherical particles normally illuminated by a plane circularly polarized electromagnetic wave. The method is based on the quasicrystalline approximation (QCA) of the theory of multiple scattering of waves (TMSW) using the multipole expansion of fields and the tensor Green function in vectorial spherical wavefunctions. The method is applied for analyzing the characteristics of radiation scattered by a partially ordered monolayer and a monolayer with a nonideal lattice. The results of calculations are compared with the available experimental data on the position of the first-order diffraction peak on the angular and spectral dependences of the intensity of radiation scattered by a closely packed monolayer with a nonideal triangular lattice of SiO2 particles. Good conformity of the results has been established.



Соllective Fluorescence of Composite Nanoparticles
Abstract
Fluorescence of a suspension of spherical nanoparticles consisting of a gold core surrounded by silicon dioxide doped with fluorescein molecules is experimentally studied. The model of a composite nanoparticle is investigated theoretically and experimentally, taking into account polarization fluctuations. It is shown that a local nonlinear feedback in the system leads to characteristic temperature dependences of the fluorescence linewidth and intensity. As the medium was cooled from room temperature to liquid nitrogen temperature, the fluorescence spectrum narrowed and its intensity strongly increased. A comparison of experimental data with numerical calculations showed that the changes observed in experiments are not explained by the temperature dependence of the parameters of elements of a nanoparticle. The analysis of the dynamics of polarization phases of dye molecules showed that the synergetic effect should be taken into account, which forms the basis of plasmon–polariton superradiance.



Nuclei, Particles, Fields, Gravitation, and Astrophysics
Two-Dimensional Hydrogen-like Atom: Photon Emission and Relativistic Energy Corrections
Abstract
Using the well-known solution ΨS of the Schrödinger equation for an electron in the field of a nucleus (Ze) in polar coordinates, via which the spin-state-dependent Dirac spinor Ψ± obtained here is expressed, and by extending the QED methods to subspace {0; 1, 2}, we have calculated the probability of single-photon emission by a two-dimensional hydrogen-like atom with allowance made for the polarization and spin states. Relativistic energy corrections ∼(Zα)4 to the energy value have also been found. We show that the so-called contact interaction typical of a three-dimensional hydrogen-like atom also takes place in the twodimensional case, while the ordinary three-dimensional spin–orbit interaction is absent altogether.



Tidal Effects in Some Regular Black Holes
Abstract
This paper is aimed to study the tidal forces produced by a class of regular black holes. We consider the radial infall of test particle and find radial as well as angular components of tidal forces by taking geodesic deviation equations. We also compute geodesic deviation vector by solving geodesic deviation equation numerically. It is concluded that a particle undergos either compression or stretching in radial or angular direction due to tidal forces.



Solids and Liquids
Anomalous Heat and Momentum Transport Arising from Surface Roughness in a Normal 3He Slab
Abstract
I discuss heat and momentum transport in a mesoscopic film of 3He, confined by rough walls in the normal Fermi liquid state. Inelastic binary quasiparticle scattering mediated by elastic scattering from the surface roughness gives rise to a coherent “mixed” scattering channel that drives anomalous transport over a range of temperature. I calculate the thermal conductivity and viscosity of the film in this regime and derive these in terms of the film thickness and autocorrelation function of the surface roughness, which enters the formulation as an independent input. This calculation can be useful in understanding and isolating the effects of confinement and surface roughness, especially in the context of exploring the superfluid state in the film.



Spin-Dependent Electronic Dynamics in a Hybrid Nonresonance III–V/II–VI Heterostructure
Abstract
The processes of electron spin dynamics in a hybrid nonresonance structure, which includes a layer of a diluted magnetic II–Mn–VI semiconductor and an asymmetric quantum well (QW) of a nonmagnetic III–V semiconductor, are experimentally studied. The nonresonance of the structure is determined by the fact that the level of the ground state of the magnetic layer falls into the range of the excited states of the nonmagnetic QW. The electron polarization in the ground thermalized state of QW is found not to depend on the magnetic part of the structure. However, the magnetic part affects the electron polarization in the excited state via spin injection from the magnetic semiconductor and the mixing of the electronic states of the magnetic and nonmagnetic subsystems of the structure. The possibility of controlling the polarization of an electron spin by carrier excitation toward the region of mixed states along with the absence of depolarizing influence of the magnetic semiconductor on carriers in the thermalized state of QW can be applied to design new spintronic devices along with those that use spin injection, optical orientation, and depolarization.



Order, Disorder, and Phase Transition in Condensed System
Low-Temperature Schottky Anomalies and the Magnetic State of the p Electrons of Oxygen in Substituted Gd0.4Sr0.6CoO3 – δ Cobaltites
Abstract
The XANES spectra (X-ray absorption near-edge spectra) at the K edge of Co and the L3 edge of Gd in polycrystalline Gd0.4Sr0.6CoO3 – δ rare-earth oxides with an ordered and disordered distribution of Gd3+ and Sr2+ cations over the A sites in the crystal lattice are measured. The results of XANES measurements do not reveal a noticeable shift in the absorption edge with increasing Sr concentration as compared to the GdCoO3 parent composition. The measured temperature dependences of the heat capacity of polycrystalline ordered and disordered samples and a single-crystal ordered Gd0.4Sr0.6CoO2.85 sample exhibit two Schottky anomalies. These anomalies are thought to be related to the high-spin state of the Co3+ ions in the pyramidal environment caused by oxygen deficiency and to the magnetic state of oxygen p electrons induced by the doping-assisted generation of a hole in the 2p state. The absence of a noticeable shift in the absorption edge and the presence of two Schottky anomalies support the fact that the charge state of cobalt remains unchanged in the compounds under study.



Microscopic Theory of Pinning of Multiquantum Vortex in Cylindrical Cavity
Abstract
We have proposed and developed a microscopic model of depinning (escape) of a multiquantum vortex in a superconductor with a cylindrical nonconducting cavity with the transverse size smaller than or on the order of the superconducting coherence length ξ0 at zero temperature. The spectrum of subgap quasiparticle excitations in two- and three-quantum vortices trapped by a cylindrical cavity has been calculated in the quasiclassical approximation. It is shown that the transformation of the spectrum is accompanied by break of anomalous spectral branches due to normal reflection of quasiparticles from the surface of a defect. A microscopic (spectral) criterion for multiquantum vortex pinning has been proposed; according to this criterion, the multiquantum vortex can be trapped in the cavity during the formation of a minigap in the elementary excitation spectrum near the Fermi level. Self-consistent calculations of density of states N(r, ε) for two- and three-quantum vortices trapped by a cylindrical cavity of radius on the order of ξ0 have been performed using quasiclassical Eilenberger equations. In the pure limit and for low temperatures T ≪ Tc, peculiarities observed in the N(r, ε) distribution reflect the presence of M anomalous spectral branches in the M-quantum vortex and confirm the correctness of the spectral criterion of pinning (depinning) of a multiquantum vortex.



Electronic Properties of Solid
Dynamics of Electronic States and Magnetoabsorption in 3D Topological Insulators in a Quantizing Magnetic Field
Abstract
Quantum states have been calculated analytically; the dynamics of a wave packet in a magnetic field has been investigated, and the optical absorption coefficient has been calculated for surface states in 3D topological insulators of the Bi2Te3 family. We have detected a qualitative effect of the hexagonal warping of the spectrum on the structure of wavefunctions at the Landau levels, its manifestation in the features of the wave packet dynamics in a quantizing magnetic field, as well as in the frequency dependence of the optical absorption coefficient, in which new peaks that are absent in the isotropic model of the spectrum appear depending on the polarization of the incident wave. The effects considered here can be manifested in the optical and transport experiments with topological insulators, which makes it possible to determine the parameters of their band structure.



Universal Frequency Dependence of the Hopping AC Conductance in p-Ge/GeSi Structures in the Integer Quantum Hall Effect Regime
Abstract
The hopping ac conductance, which is realized at the transverse conductance minima in the regime of the integer Hall effect, has been measured using a combination of acoustic and microwave methods. Measurements have been made in the p-GeSi/Ge/GeSi structures with quantum wells in a wide frequency range (30–1200 MHz). The experimental frequency dependences of the real part of ac conductance σ1 have been interpreted on the basis of the model presuming hops between localized electronic states belonging to isolated clusters. At high frequencies, dominating clusters are pairs of close states; upon a decrease in frequency, large clusters that merge into an infinite percolation cluster as the frequency tends to zero become important. In this case, the frequency dependences of the ac conductance can be represented by a universal curve. The scaling parameters and their magnetic-field dependence have been determined.



Statistical, Nonlinear, and Soft Matter Physics
Mechanisms of Rotational Dynamics of Chiral Liquid Crystal Droplets in an Electric Field
Abstract
The dynamics of the orientational structure of chiral nematic (CN) droplets in an isotropic medium in dc and ac electric fields is investigated by the polarized light microscopy technique. It is shown theoretically that the dynamics of rotational processes in these kinds of systems is determined by electroconvective processes developing due to the flexoelectric polarization associated with the initial configuration of the director field in droplets. It is established experimentally that the linear and quadratic regions of dependence of the rotational velocity of droplets on the electric field strength are explained by the above-mentioned mechanisms. Numerical simulation on the basis of the approach developed gives good agreement with experimental data.



Flow Mechanisms and Diffusion Combustion of Turbulent Jets
Abstract
The problem of flow and combustion of turbulent jets of fuel gas in the external medium of an oxidant (air) is solved with regard to the existence of the actual boundary of the turbulent flow region of a jet. Based on the ideas of the friction force of the external flow acting on the boundary of a jet, the entrainment equation for the external medium is derived that closes the system of equations of motion of turbulent jets. The physical meaning of the dissipation rate of the turbulent energy of a jet is interpreted as the work of the friction force. To describe the combustion kinetics, the limit of instantaneous reactions corresponding to the diffusion combustion mode is used. Calculations of the effective reaction rates for reactants and the volumes occupied by them are based on the representation of a turbulent medium as an aggregation of independent turbulent particles—vortices—whose random contacts lead to the mixing and combustion of reacting substances [31]. The concomitant phenomena of flow and combustion are analyzed, including radiation effects. In particular, it is shown that the apparent increase in the combustion temperature with increasing Reynolds number is in fact attributed to the relative decrease of thermal radiation losses. Qualitative agreement is obtained between the results of the theoretical calculations of the length of a combustion torch and experimental data.



Dynamics of Upward Jets with Newtonian Cooling
Abstract
The Rayleigh–Taylor instability which is responsible for the occurrence of narrow upward jets is studied in the scope of the nonhydrostatic model with horizontally nonuniform density and the Newtonian cooling. As analysis shows, the total hierarchy of instabilities in this model consists of three regimes—collapse, algebraic instability, and inertial motion. Realization of these stages, mutual transitions, and interference depend on a ratio between two characteristic time scales—collapse time and cooling time.



Localization of Excitations near a Thin Structured Spacer between Linear and Nonlinear Crystals
Abstract
It has been shown that localized and semi-localized stationary states exist near a thin structured defect layer between a linear medium and a Kerr nonlinear medium. Localized states are described by a monotonically decreasing amplitude of the field on the both sides of the interface between the media. Semilocalized states are characterized by the field that has the form of a standing wave in the linear medium and decreases monotonically in the nonlinear medium. Kerr media with self-focusing and defocusing are considered. The proposed model is described by a system of the linear and nonlinear Schrödinger equations with a specific potential simulating a thin structured defect layer. It has been shown that localized and semi-localized states exist in different energy ranges in the case of contact of the linear medium with the self-focusing medium. In the case of contact of the linear medium with the defocusing medium, two types of localized and semi-localized states differing in energy and field profile can exist in different energy ranges. In particular cases, expressions for energies of states of these types have been obtained and conditions of their applicability have been indicated.


