


Volume 123, Nº 5 (2016)
- Ano: 2016
- Artigos: 25
- URL: https://journals.rcsi.science/1063-7761/issue/view/11980
Atoms, Molecules, Optics
Waveguide modes of 1D photonic crystals in a transverse magnetic field
Resumo
We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of the fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.



One-dimensional magnetophotonic crystals with magnetooptical double layers
Resumo
One-dimensional magnetophotonic microcavity crystals with nongarnet dielectric mirrors are created and investigated. The defect layers in the magnetophotonic crystals are represented by two bismuth-substituted yttrium iron garnet Bi:YIG layers with various bismuth contents in order to achieve a high magnetooptical response of the crystals. The parameters of the magnetophotonic crystal layers are optimized by numerical solution of the Maxwell equations by the transfer matrix method to achieve high values of Faraday rotation angle ΘF and magnetooptical Q factor. The calculated and experimental data agree well with each other. The maximum values of ΘF =–20.6°, Q = 8.1° at a gain t = 16 are obtained for magnetophotonic crystals with m = 7 pairs of layers in Bragg mirrors, and the parameters obtained for crystals with m = 4 and t = 8.5 are ΘF =–12.5° and Q = 14.3°. It is shown that, together with all-garnet and multimicrocavities magnetophotonic crystals, such structures have high magnetooptical characteristics.



Autoionization resonances in the photoabsorption spectra of Fen+ iron ions
Resumo
The photoabsorption cross sections of a neutral iron atom, as well as positive Fe+ and Fe2+ ions, are calculated in the relativistic random-phase approximation with exchange in the energy range 20–160 eV. The wavefunctions of the ground and excited states are calculated in the single-configuration Hartree–Fock–Dirac approximation. The resultant photoabsorption spectra are compared with experimental data and with the results of calculations based on the nonrelativistic spin-polarized version of the random-phase approximation with exchange. Series of autoionization resonance peaks, as well as giant autoionization resonance lines corresponding to discrete transitions 3p → 3d, are clearly observed in the photoabsorption cross sections. The conformity of the positions of calculated peaks of giant autoionization resonances with experimental data is substantially improved by taking into account additionally the correlation electron–electron interaction based on the model of the dynamic polarization potential.



Nonlocal excitonic–mechanical interaction in a nanosystem
Resumo
The dynamics of a nanoparticle during its dipole interaction with an excitonic excitation in an extended quasi-one-dimensional polarizable medium is investigated. Bundles of J-aggregates of dye molecules are considered as an example of the latter. The nonlocal excitonic–mechanical interaction between the field of an amplifying or absorbing nanoparticle and excitons in a bundle has been simulated numerically. It has been found that the interaction between the field of the induced nanoparticle dipole and the fields of the molecular dipoles in an aggregate can lead to a change in the particle trajectory and excitonic pulse shape. The possibility of controlling the nanoparticle by excitonic pulses and the reverse effect of the nanoparticle field on the dynamics of excitons due to the nonlocal excitonic–mechanical interaction has been demonstrated.



Pulse regime in formation of fractal fibers
Resumo
The pulse regime of vaporization of a bulk metal located in a buffer gas is analyzed as a method of generation of metal atoms under the action of a plasma torch or a laser beam. Subsequently these atoms are transformed into solid nanoclusters, fractal aggregates and then into fractal fibers if the growth process proceeds in an external electric field. We are guided by metals in which transitions between s and d-electrons of their atoms are possible, since these metals are used as catalysts and filters in interaction with gas flows. The resistance of metal fractal structures to a gas flow is evaluated that allows one to find optimal parameters of a fractal structure for gas flow propagation through it. The thermal regime of interaction between a plasma pulse or a laser beam and a metal surface is analyzed. It is shown that the basic energy from an external source is consumed on a bulk metal heating, and the efficiency of atom evaporation from the metal surface, that is the ratio of energy fluxes for vaporization and heating, is 10–3–10–4 for transient metals under consideration. A typical energy flux (~106 W/cm2), a typical surface temperature (~3000 K), and a typical pulse duration (~1 μs) provide a sufficient amount of evaporated atoms to generate fractal fibers such that each molecule of a gas flow collides with the skeleton of fractal fibers many times.



Light transmission coefficients by subwavelength aluminum gratings with dielectric layers
Resumo
Spectral positions of plasmon resonances related to boundaries between a thin aluminum layer and dielectrics (air, glass, VDF–TrFE 65/35 ferroelectric copolymer, and indium tin oxide (ITO)) have been determined in the transmission spectra of aluminum gratings of three types with 30 × 30 μm2 dimensions and 350-, 400-, and 450-nm line periods. Experimental results agree well with spectral positions of plasmon resonances calculated for the normal incidence of TM-polarized light. In addition, maximum values of transmission coefficients in the region of λ ≈ 900–950 nm have been determined for glass–Al–copolymer and glass–ITO–Al–copolymer structures. These values are close to 100%, which shows that the effective optical aperture is two times greater than the geometric areas of slits.



One-time pad, complexity of verification of keys, and practical security of quantum cryptography
Resumo
A direct relation between the complexity of the complete verification of keys, which is one of the main criteria of security in classical systems, and a trace distance used in quantum cryptography is demonstrated. Bounds for the minimum and maximum numbers of verification steps required to determine the actual key are obtained.



Nuclei, Particles, Fields, Gravitation, and Astrophysics
Distinctive aspects of the evolution of galactic magnetic fields
Resumo
We perform an in-depth analysis of the evolution of galactic magnetic fields within a semi-analytic galaxy formation and evolution framework, determine various distinctive aspects of the evolution process, and obtain analytic solutions for a wide range of possible evolution scenarios.



Vacuum polarization in the field of a multidimensional global monopole
Resumo
An approximate expression for the Euclidean Green function of a massless scalar field in the spacetime of a multidimensional global monopole has been derived. Expressions for the vacuum expectation values 〈ϕ2〉ren and 〈T00〉ren have been derived by the dimensional regularization method. Comparison with the results obtained by alternative regularization methods is made.



The inverse problem of estimating the gravitational time dilation
Resumo
Precise testing of the gravitational time dilation effect suggests comparing the clocks at points with different gravitational potentials. Such a configuration arises when radio frequency standards are installed at orbital and ground stations. The ground-based standard is accessible directly, while the spaceborne one is accessible only via the electromagnetic signal exchange. Reconstructing the current frequency of the spaceborne standard is an ill-posed inverse problem whose solution depends significantly on the characteristics of the stochastic electromagnetic background. The solution for Gaussian noise is known, but the nature of the standards themselves is associated with nonstationary fluctuations of a wide class of distributions. A solution is proposed for a background of flicker fluctuations with a spectrum (1/f)γ, where 1 < γ < 3, and stationary increments. The results include formulas for the error in reconstructing the frequency of the spaceborne standard and numerical estimates for the accuracy of measuring the relativistic redshift effect.



Possible acceleration of cosmic rays in a rotating system: Uehling-Uhlenbeck model
Resumo
We illustrate the possible acceleration of cosmic rays passing through a kind of amplification channel (via diffusion modes of propagating plane-wave fronts) induced by a rotating system. Our analysis is mainly based on the quantum discrete kinetic model (considering a discrete Uehling-Uhlenbeck collision term), which has been used to study the propagation of plane (e.g., acoustic) waves in a system of rotating gases.



Gravitational collapse of dark energy field configurations and supermassive black hole formation
Resumo
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.



Solids and Liquids
Experimental observation of motion of edge dislocations in Ge/GexSi1–x/Si(001) (x = 0.2–0.6) heterostructures
Resumo
The Ge/GexSi1–x/Si(001) (x = 0.2–0.6) heterostructures grown by the molecular epitaxy method are analyzed using high-resolution electron microscopy with atomic resolution. The thickness of the GexSi1–x buffer layer is 7–35 nm. It is shown that such heterostructures relax in two stages: an ordered network of edge dislocations is formed during their growth (500°C) at the Ge/GeSi interface and then, contrary to the generally accepted opinion concerning their immobility, some of the edge dislocations move through the buffer GeSi layer to the GeSi/Si(001) interface during annealing at higher temperatures and x > 0.3. It is found that plastic relaxation of the GeSi buffer layer occurs due to motion of dislocation complexes of the edge type, consisting of a pair of complementary 60° dislocations with the ends of {111} extra planes located approximately at a distance from 2 to 12 interplanar spacings. It is shown that the penetration of dislocation complexes into the GeSi buffer layer and further to the GeSi/Si interface is intensified with increasing annealing temperature (600–800°C) and the fraction of Ge in the buffer layer.



Order, Disorder, and Phase Transition in Condensed System
Singular temperature dependence of the equation of state of superconductors with spin–orbit interaction in the low-temperature region
Resumo
The equation of state is investigated for a thin superconducting film in a longitudinal magnetic field and with strong spin-orbit interaction at the critical point. As a first step, the state with the maximal value of the magnetic field for a given value of spin–orbit interaction at T = 0 is chosen. This state is investigated in the low-temperature region. The temperature contribution to the equation of state is weakly singular.



Electronic Properties of Solid
Strict parabolicity of the multifractal spectrum at the Anderson transition
Resumo
Using the well-known “algebra of multifractality,” we derive the functional equation for anomalous dimensions Δq, whose solution Δ = χq(q–1) corresponds to strict parabolicity of the multifractal spectrum. This result demonstrates clearly that a correspondence of the nonlinear σ-models with the initial disordered systems is not exact.



Effective Hamiltonian of silicene in the presence of electric and magnetic fields
Resumo
An effective Hamiltonian of silicene in the neighborhood of Dirac points in the presence of electric and magnetic fields perpendicular to the plane of the film is constructed on the basis of symmetry analysis. Numerical coefficients of various terms in the Hamiltonian are obtained by the tight binding method in the basis sp3d5s* with regard to the interaction with one nearest neighbor. This method was developed in the previous paper [1] in the case of a sublattice displacement of 0.44 Å, which corresponds to the theoretical value of displacement obtained from first principles for a free film of silicene. The effect of the displacement of sublattices on the orientation of spin and pseudospin in silicene is analyzed. The Hamiltonian obtained allows one to consider spin and electron transport for charge carriers with energy less than 0.5 eV. The orbital motion of electrons in an external magnetic field perpendicular to the film is analyzed in detail.



A statistical model of a metallic inclusion in semiconducting media
Resumo
The properties of an isolated multicharged atom embedded into a semiconducting medium are discussed. The analysis generalizes the results of the known Thomas–Fermi theory for a multicharged (Z ≫ 1) atom in vacuum when it is immersed into an electron–hole gas of finite temperature. The Thomas–Fermi–Debye (TFD) atom problem is directly related to the properties of donors in low-doped semiconductors and is alternative in its conclusions to the ideal scenario of dissociation of donors. In the existing ideal statistics, an individual donor under infinitely low doping is completely ionized (a charged center does not hold its neutralizing counter-ions). A Thomas–Fermi–Debye atom (briefly, a TFD donor) remains a neutral formation that holds its screening “coat” even for infinitely low doping level, i.e., in the region of ndλ03 ≪ 1, where nd is the concentration of the doping impurity and λ0 is the Debye length with the parameters of intrinsic semiconductor. Various observed consequences in the behavior of a TFD donor are discussed that allow one to judge the reality of the implications of the TFD donor model.



Electronic structure of nitrides PuN and UN
Resumo
The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin–orbit coupling and the strong correlations of 5f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f6 configuration and the jj-type coupling. An increase in the occupancy of the 5f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UNx β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.



Comparison between Si/SiO2 and InP/Al2O3 based MOSFETs
Resumo
Electron transport properties of InP-based MOSFET as a new channel material with Al2O3 as a high-k dielectric oxide layer in comparison with Si-based MOSFET are studied by the ensemble Monte Carlo simulation method in which the conduction band valleys in InP are based on three valley models with consideration of quantum effects (effective potential approach). Id–Vd characteristics for Si-based MOSFET are in good agreement with theoretical and experimental results. Our results show that Id of InP-based MOSFET is about 2 times that of Si-based MOSFET. We simulated the diagrams of longitudinal and transverse electric fields, conduction band edge, average electron velocity, and average electron energy for Si-based MOSFET and compared the results with those for InP-based MOSFET. Our results, as was expected, show that the transverse electric field, the conduction band edge, the electron velocity, and the electron energy in a channel in the InP-based MOSFET are greater than those for Si-based MOSFET. But the longitudinal electric field behaves differently at different points of the channel.



Strong coupling between a permalloy ferromagnetic contact and helical edge channel in a narrow HgTe quantum well
Resumo
We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.



Tunneling current noise spectra of biased impurity with a phonon mode
Resumo
We report the results of theoretical investigations of the tunneling current noise spectra through a single-level impurity both in the presence and in the absence of electron–phonon interaction based on the nonequilibrium Green’s functions formalism. We show that due to the quantum nature of tunneling, the Fano factor is dramatically different from the Poisson limit both in the presence and in the absence of inelastic processes. The results are demonstrated to be sensitive to the tunneling contact parameters.



Statistical, Nonlinear, and Soft Matter Physics
Conductivity of metal vapors at the critical point
Resumo
The conductivity of metal vapors at the critical point and near it has been considered. The liquid-metal conductivity originates in this region. The thermodynamic parameters of the critical point, the density of conduction electrons, and the conductivities of various metal vapors have been calculated within the unified approach. It has been proposed to consider the conductivity at the critical point—critical conductivity—as the fourth critical parameter in addition to the density, temperature, and pressure.



Soliton-like defects in nematic liquid crystal thin layers
Resumo
The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions of a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.



On a simple molecular–statistical model of a liquid-crystal suspension of anisometric particles
Resumo
A molecular–statistical mean-field theory is constructed for suspensions of anisometric particles in nematic liquid crystals (NLCs). The spherical approximation, well known in the physics of ferromagnetic materials, is considered that allows one to obtain an analytic expression for the free energy and simple equations for the orientational state of a suspension that describe the temperature dependence of the order parameters of the suspension components. The transition temperature from ordered to isotropic state and the jumps in the order parameters at the phase-transition point are studied as a function of the anchoring energy of dispersed particles to the matrix, the concentration of the impurity phase, and the size of particles. The proposed approach allows one to generalize the model to the case of biaxial ordering.



Erratum
Erratum to: “Renormalization of the Lorentz–Abraham–Dirac equation for radiation reaction force in classical electrodynamics”


