High-precision measurements of the compressibility and the electrical resistivity of bulk g-As2Te3 glasses at a hydrostatic pressure up to 8.5 GPa


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

High-precision studies of the volume and the electrical resistivity of g-As2Te3 glasses at a high hydrostatic pressure up to 8.5 GPa at room temperature are performed. The glasses exhibit elastic behavior in compression only at a pressure up to 1 GPa, and a diffuse structural transformation and inelastic density relaxation (logarithmic in time) begin at higher pressures. When the pressure increases further, the relaxation rate passes through a sharp maximum at 2.5 GPa, which is accompanied by softening the relaxing bulk modulus, and then decreases, being noticeable up to the maximum pressure. When pressure is relieved, an unusual inflection point is observed in the baric dependence of the bulk modulus near 4 GPa. The polyamorphic transformation is only partly reversible and the residual densification after pressure release is 2%. In compression, the electrical resistivity of the g-As2Te3 glasses decreases exponentially with increasing pressure (at a pressure up to 2 GPa); then, it decreases faster by almost three orders of magnitude in the pressure range 2–3.5 GPa. At a pressure of 5 GPa, the electrical resistivity reaches 10–3 Ω cm, which is characteristic of a metallic state; this resistivity continues to decrease with increasing pressure and reaches 1.7 × 10–4 Ω cm at 8.1 GPa. The reverse metal–semiconductor transition occurs at a pressure of 3 GPa when pressure is relieved. When the pressure is decreased to atmospheric pressure, the electrical resistivity of the glasses is below the initial pressure by two–three orders of magnitude. Under normal conditions, both the volume and the electrical resistivity relax to quasi-equilibrium values in several months. Comparative structural and Raman spectroscopy investigations demonstrate that the glasses subjected to high pressure have the maximum chemical order. The glasses with a higher order have a lower electrical resistivity. The polyamorphism in the As2Te3 glasses is caused by both structural changes and chemical ordering. The g-As2Te3 compound is the first example of glasses, where the reversible metallization under pressure has been studied under hydrostatic conditions.

About the authors

V. V. Brazhkin

Vereshchagin Institute of High-Pressure Physics

Author for correspondence.
Email: brazhkin@hppi.troitsk.ru
Russian Federation, Troitsk, Moscow, 108840

E. Bychkov

LPCA, UMR 8101 CNRS

Email: brazhkin@hppi.troitsk.ru
France, Dunkerque, 59140

O. B. Tsiok

Vereshchagin Institute of High-Pressure Physics

Email: brazhkin@hppi.troitsk.ru
Russian Federation, Troitsk, Moscow, 108840

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Inc.