Dual nature of the orientational effect of ultrasound on liquid crystals


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The new model of thresholdless distortion of the orientational structure in a homeotropic layer of nematic liquid crystal with free ends in ultrasonic field has been experimentally substantiated for the first time. The model is constructed within the concepts of nonequilibrium thermodynamics and statistical hydrodynamics of liquid crystals for the frequency range in which the elastic and viscous wavelengths are, respectively, longer and shorter than the layer thickness. The main regularities of the phenomenon, which relate the conditional effect threshold to the ultrasonic frequency and layer thickness, have been established based on the experimental data for (20–150)-μm-thick layers in the frequency range of 0.1–9 MHz. These data are compared with the results of numerical calculations, performed taking into account two mechanisms of liquid crystal structure distortion (convective and nonlinear relaxation ones).

作者简介

O. Kapustina

Andreyev Acoustics Institute

编辑信件的主要联系方式.
Email: oakapustina@yandex.ru
俄罗斯联邦, Moscow, 117036


版权所有 © Pleiades Publishing, Inc., 2017
##common.cookie##