Symmetry of Structures That Can Be Approximated by Chains of Regular Tetrahedra


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The noncrystallographic symmetries of chains of regular tetrahedra are determined by mapping the system of algebraic geometry and topology designs to the structural level. It has been shown that the basic structural unit of such a chain is a tetrablock: a seven-vertex linear aggregation over faces of four regular tetrahedra, which is implemented in linear (right- and left-handed) and planar versions. The symmetry groups of linear and planar tetrablocks are isomorphic, respectively, to the projective special linear group PSL(2, 7) of order 168 and the projective general linear group PGL(2, 7) of order 336. A class of structures formed by an assembly of tetrablocks having no common tetrahedra is introduced. Examples of tetrablock assembly over common face, leading to a Boerdijk–Coxeter helix, an α helix, and a helix used as one of collagen models are presented.

Авторлар туралы

A. Talis

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: talishome@mail.ru
Ресей, Moscow, 119991

A. Rabinovich

Institute of Biology, Karelian Research Centre, Russian Academy of Sciences

Email: talishome@mail.ru
Ресей, Petrozavodsk, 185910

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019