Simulation of Simple and Complex Gadolinium Molybdates by the Interatomic Potential Method


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Crystals of ferroelectric‒ferroelastic gadolinium molybdate Gd2(MoO4)3, calcium molybdate CaMoO4, and double sodium‒gadolinium molybdates of stoichiometric (Na1/2Gd1/2MoO4) and cationdeficient (Na2/7Gd4/7MoO4) compositions, which are used to design solid-state lasers, phosphors, and white LEDs, have been simulated by the interatomic potential method. Their structural, mechanical, and thermodynamic properties are calculated using a unified system of interatomic potentials and effective ion charges, which demonstrated transferability and made it possible not only to describe the existing experimental data but also to predict some important physical and thermodynamic properties of molybdate crystals. The influence of the deviation from stoichiometry and partial ordering of cations on sites in nonstoichiometric crystals on the properties and local structure of sodium‒gadolinium molybdates is discussed.

作者简介

V. Dudnikova

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: VDudnikova@hotmail.com
俄罗斯联邦, Moscow, 119991

E. Zharikov

Prokhorov General Physics Institute

Email: VDudnikova@hotmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2018