


Volume 61, Nº 10 (2017)
- Ano: 2017
- Artigos: 8
- URL: https://journals.rcsi.science/1063-7729/issue/view/11989
Article
Formation of close binary black holes merging due to gravitational-wave radiation
Resumo
The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30–100M⊙. The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a “kick”—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.



Search for and detection of pulsars inmonitoring observations at 111 MHz
Resumo
In the course of monitoring interplanetary scintillations of a large number of sources using the Big Scanning Antenna of the Lebedev Physical Institute, a search for pulsars with periods ≥0.4 s at declinations −9◦ < δ < 42◦ and right ascensions 0h < α < 24h was simultaneously carried out. The search was conducted using four years of observations carried out at 110.25MHz in six frequency channels making up a 2.5 MHz band and having a time resolution of 100 ms. The initial identification of pulsar candidates was done using Fourier power spectra averaged over the entire observational period; the pulsar candidates were then verified using observations with higher frequency and time resolution: 32 frequency channels and a time resolution of 12.5 ms. Eighteen new pulsars were discovered in the studied area, whose main characteristics are presented.



Orbital period variations of the eclipsing binaries TU Cnc, VZ Leo, and OS Ori
Resumo
Variations of the orbital periods of the eclipsing binaries TU Cnc, VZ Leo, and OS Ori are analyzed. Secular period decreases were earlier believed to occur in these systems. It is demonstrated that the period variations of TU Cnc can be represented using the light-time effect corresponding to the orbital motion of the eclipsing binary with a period of 78.6 years around the center ofmass of the triple system, with the mass of the third body being M3 > 0.82M⊙. With the same accuracy, the period variations of VZ Leo and OS Ori can be represented either solely using the light-time effect, or a superposition of a secular period decrease and the light-time effect. For VZ Leo, the period of the long-term orbit is 63.8 years in the former case and 67.9 years in the latter case. Similar masses for the third body are indicated in both cases: M3 > 0.55M⊙ and M3 > 0.61M⊙. For OS Ori, the period of the long-term orbit is 46 years and M3 > 0.5M⊙ in the former case, and the period is 36 years and M3 > 0.6M⊙ in the latter case.



Activity of an M4.5 hyades dwarf with a planetary system
Resumo
An analysis of the activity of the Hyades M4.5 dwarf EPIC 210490365, K2–25 (2MASS J04130560+1514520), based on observational data obtained with the Kepler Space Telescope is presented. This dwarf has a Neptune-type planet. The continuous evolution of active regions on the surface of K2–25 is traced over 70 days. The brightness changes of the star display a fairly stable nature. The rotation period of K2–25 is 1.878 ± 0.030 day. Maps of temperature inhomogeneities on the surface of K2–25 are constructed for 37 sets of observations. All these maps show concentrations of spots at two longitudes, with more active region having the larger area. The total spotted surface area S is, on average, 2.6% of the total visible surface of the star. The estimated differential rotation speed of the star is ΔΩ = 0.0071 ± 0.002 rad/day. The positions of K2–25 in S–age, S–rotation period, and S–Rossby number diagrams are consistent with the general trends of these dependences established earlier for M dwarfs. The derived Rossby number for K2–25, Ro = 0.36, is used to estimate the star’s X-ray luminosity to be log(RX) = −4.20.



Parity fluctuations in stellar dynamos
Resumo
Observations of the solar butterfly diagram from sunspot records suggest persistent fluctuations in parity, away from the overall, approximately dipolar pattern. A simple mean-field dynamo model is used with a solar-like rotation law and perturbed α effect. The parity of the magnetic field relative to the rotational equator can demonstrate can be described as resonance behavior, while the magnetic energy behaves in a more or less expected way. Possible applications of this effect are discussed in the context of various deviations of the solar magnetic field from dipolar symmetry, as reported from analyses of archival sunspot data. The model produces fluctuations in field parity, and hence in the butterfly diagram, that are consistent with observed fluctuaions in solar behavior.



Search for close stellar encounters with the solar system from data on nearby dwarfs
Resumo
Trigonometric parallaxesmeasuredwith ground-based telescopes of the RECONS consortium as part of the CTIOPI program are used to search for stars that have either had an encounter with the solar system in the past or will have such an encounter in the future, at distances of less than a few parsecs. These are mainly low-mass dwarfs and subdwarfs of types M, L, and T currently at distances of less than 30 pc from the Sun. Six stars for which encounters with the solar orbit at distances of less than 1 pc are possible have been identified for the first time. For example, the minimum distance for the star **SOZ 3A will be 0.72 ± 0.11 pc at an epoch of 103 ± 44 thousand years in the future.



Morphological indictors of the chirality of solar filaments
Resumo
There is no doubt that the structural features of filaments reflect properties of their magnetic fields, such as chirality and helicity. However, the interpretation of some morphological features can lead to incorrect conclusions when the observing time is limited and the spatial resolution is insufficiently high. In spite of the relative constancy of their overall shapes, filaments are dynamical formations with inhomogeneities moving along the threads making them up. Therefore, it is possible to observe material concentrated not only in magnetic traps, but also along curved arcs. Difficulties often arise in determining the chirality of filaments with anomalous “barbs”; i.e., those whose jagged side is located on the opposite side of the axis compared to most (“normal”) filaments. A simple model is used to show that anomalous barbs can exist in an ordinary magnetic flux rope, with the threads of its fine structure oriented nearly perpendicular to its length. A careful analysis of images with the maximum available spatial resolution and with information about temporal dynamics, together with comparisons with observations in various spectral lines, can enable a correct determination of the chirality of filaments.



Helioseismic models of the sun with a low heavy element abundance
Resumo
Helioseismology and neutrino experiments probing the internal structure of the Sun have yieldedmuch information, such as the adiabatic elasticity index, density, and sound speed in the convective and radiative zones, the depth of the convective zone, and the flux of neutrinos from the core. The standard model of the Sun does not adequately reproduce these characteristics, with models with low heavy element contents (mass fraction of metals Z = 0.013 in the convective zone) deviating from the helioseismic data appreciably more strongly than models with high heavy element contents (Z = 0.018). However, a spectroscopic low Z value is supported by studies reconstructing the Γ1 profile in the adiabatic part of the convective zone based on the oscillation frequencies. Models of the convective zone show a good agreement precisely for low Z values. This study attempts to construct a model for the Sun with low Z that satisfies the helioseismic constraints. This model requires changes in the p + p reaction cross section and the opacities in the radiative zone. In our view, the helioseismic result for the mass concentrated in the convective zone testifies that the p + p reaction cross section or the electron-screening coefficient in the solar core must be increased by several percent over the current values. This requires a comparatively small correction to the opacities (by less than 5%), in order to obtain a solar model with low Z that is in agreement with the results of helioseismology and the observed solar neutrino fluxes.


