


Том 60, № 2 (2016)
- Год: 2016
- Статей: 12
- URL: https://journals.rcsi.science/1063-7729/issue/view/11885
Article
Phase space of a two-dimensional model of a Parker dynamo
Аннотация
The dependences of the magnetic-field strength, variations of the magnetic field, and the multipole level on the amplitudes of the α and ω effects are considered using a two-dimensional model for a Parker dynamo in a spherical layer. Calculations have been carried out for both traditional spatial distributions of α and ω and geostrophic regimes obtained from three-dimensional modeling of thermal convection. Two-dimensional distributions of the dynamo-wave velocities in the zone where magnetic field is generated are presented. Comparisons with the solar and planetary dynamos are considered.



The influence of coronal mass ejections on the gas dynamics of the atmosphere of a “hot Jupiter” exoplanet
Аннотация
The results of three-dimensional numerical simulations of the gas dynamics of the atmosphere of a “hot Jupiter” exoplanet during the passage of a coronal mass ejection (CME) from the central star are presented. These computations assumed the parameters for the stellar wind and the CME to be typical of the solar values. The characteristic variations of the flow pattern are considered for quasi-closed and closed (but appreciably distorted by the gravitational influence of the star) gaseous envelopes of the exoplanet. It is shown that a typical CME is sufficient to tear off the outer part of an asymmetric envelope that is located beyond the Roche lobe and carry it away from the exoplanet. This leads to a substantial increase in the mass-loss rate from the exoplanet envelope during the passage of CMEs. The mass-loss rate grows by about a factor of 11 for a closed envelope, and by about a factor of 14 for a quasi-closed envelope. Possible evolutionary consequences of the loss of part of the atmosphere during the passage of CMEs are discussed.



The space velocities of radio pulsars
Аннотация
Known models proposed to explain the high space velocities of pulsars based on asymmetry of the transport coefficients of different sorts of neutrinos or electromagnetic radiation can be efficient only in the presence of high magnetic fields (to 1016 G) or short rotation periods for the neutron stars (of the order of 1 ms). This current study shows that the observed velocities are not correlated with either the pulsar periods or their surface magnetic fields. The initial rotation periods are estimated in a model for the magnetedipolar deceleration of their spin, aßsuming that the pulsar ages are equal to their kinematic ages. The initial period distribution is bimodal, with peaks at 5 ms and 0.5 s, and similar to the current distribution of periods. It is shown that asymmetry of the pulsar electromagnetic radiation is insufficient to give rise to additional acceleration of pulsars during their evolution after the supernova explosion that gave birth to them. The observations testify to deceleration of the motion, most likely due to the influence of the interstellar medium and interactions with nearby objects. The time scale for the exponential decrease in the magnetic field τD and in the angle between the rotation axis and magnetic moment τß are estimated, yielding τβ = 1.4 million years. The derived dependence of the transverse velocity of a pulsar on the angle between the line of sight and the rotation axis of the neutron star corresponds to the expected dependence for acceleration mechanisms associated with asymmetry of the radiation emitted by the two poles of the star.



Refinement of the parameters of the binary pulsar B0655+64 based on 111 MHz observations
Аннотация
An analysis of monitoring observations for the pulsar PSR B0655+64, which is located in a binary system, at 111 MHz during 2002–2015 are presented. The Keplerian parameters of the pulsar have been refived: the longitude of periastron ω = 276.°5785 ± 0.°0005 and the orbital semi-major axis is ap sin i = 4.124976± 0.000003 s. The parameters of the perturbed motion have been determined: the motion of periastron ω = 0.°315 ± 0.°005/ year, and the derivative of the period of the binary system Ṗ = (-1.66 ± 0.11) × 10-14 s/s = (-0.524 ± 0.038) µs/year. The estimated time scale for the decay of the PSR 0655+64 system is (1.7 ± 0.1) × 1011 yrs.



Studies of cosmic plasma using radioastron VLBI observations of giant pulses of the pulsar B0531+21
Аннотация
The structure of the interstellar plasma in the direction of the pulsar in the Crab Nebula is studied using several sets of space-VLBI observations obtained with networks of ground telescopes and the RadioAstron space antenna at 18 and 92 cm. Six observing sessions spanning two years are analyzed. Giant pulses are used to probe the cosmic plasma, making it possible to measure the scattering parameters without averaging. More than 4000 giant pulses were detected. The interferometer responses (visibility functions) on ground and ground–space baselines are analyzed. On the ground baselines, the visibility function as a function of delay is dominated by a narrow feature at zero delay with a width of δτ ~ 1/B, where B is the receiver bandwidth. This is typical for compact continuum sources. On the ground–space baselines, the visibility function contains a set of features superposed on each other and distributed within a certain interval of delays, which we identify with the scattering time for the interfering rays τ. The amplitude of the visibility function on ground baselines falls with increasing baseline; the scattering disk is partially resolved at 18 cmand fully resolved at 92 cm. Estimates of the scattering angle ? give 0.5–1.3mas at 18 cm and 14.0 mas at 92 cm. The measured values of ? and τ are compared to estimate the distance from the source to the effective scattering screen, which is found at various epochs to be located at distances from 0.33 to 0.96 of the distance from the observer to the pulsar, about 2 kpc. The screen is close to the Crab Nebula at epochs of strong scattering, confirming that scattering on inhomogeneities in the plasma in the vicinity of the nebula itself dominates at these epochs.



Detection of new pulsars at 111 MHz
Аннотация
The first results of a search for pulsars using the Large Phased Array of the Lebedev Physical Institute at 111 MHz for right ascensions 0h-24h and declinations 21°-42° are reported. Data with a time resolution of 100 ms in six frequency channels within a 2.5-MHz frequency band have been processed. Thirty-four pulsars have been detected, of which seventeen were observed on this telescope earlier; ten known pulsars had not been observed earlier. Seven new pulsars have been discovered.



Restructuring and destruction of hydrocarbon dust in the interstellar medium
Аннотация
A model describing the main processes determining the evolution of hydrocarbon dust grains of arbitrary size under astrophysical conditions corresponding to regions of ionized hydrogen (HII regions) and supernova remnants is presented. The processes considered include aromatization and photodestruction, sputtering by electrons and ions, and shattering during collisions between grains. The model can be used to calculate the size distribution of the grains and the degree of aromatization during the evolution of HII regions and supernova remnants for a specified radiation field, relative velocity between the gas and dust, etc. The contribution of various processes to the evolution of hydrocarbon dust grains for parameters typical for the interstellar medium of our Galaxy is considered. Small grains (with fewer than 50 carbon atoms) should be fully aromatized in the interstellar medium. If larger grains initially have an aliphatic structure, this is preserved to a substantial extent. Variation in the size distribution of the grains due to collisions between grains depend appreciably on the adopted initial size distribution. With an initial distribution corresponding to that of Mathis et al. (1977), the mass fraction contributed by smaller grains tends to increase with time, while, with an initial distribution corresponding to that of Jones et al. (2013), in which the fraction of small grains is initially high, there is a general decrease in the number of grains of various sizes with time.



PN G068.1+11.0: A young pre-cataclysmic variable with an extremely hot primary
Аннотация
An analysis of spectroscopic and photometric data for the young pre-cataclysmic variable (PCV) PN G068.1+11.0, which passed through its common-envelope stage relatively recently, is presented. The spectroscopic and photometric data were obtained with the 6-m telescope and Zeiss-1000 telescope of the Special Astrophysical Observatory. The light curves show sinusoidal brightness variations with the orbital-period time scale and brightness-variation amplitudes of Δm = 1.m41, 1.m62, and 1.m57 in the B, V, and R bands, respectively. The system’s spectrum exhibits weak HI (Hβ–Hδ) andHeII λλ4541, 4686, 5411 Å absorption lines during the phases of minimum brightness, as well as HI, HeII, CIII, CIV, NIII, and OII emission lines whose intensity variations are synchronized with variations of the integrated brightness of the system. The emission-line formation in the spectra can be fully explained by the effects of fluorescence of the ultraviolet light from the primary at the surface of the cool star. All the characteristics of the optical light of PN G068.1+11.0 confirm that it is a young PCV containing sdO subdwarf. The radial velocities were measured from a blend of lines of moderately light elements, CIII+NIII λ4640 Å, which is formed at the surface of the secondary due to reflection effects. The ephemeris of the system has been improved through a joint analysis of the radial-velocity curves and light curves of pre-cataclysmic variable, using modelling of the reflection effects. The fundamental parameters of PN G068.1+11.0 have been determined using two evolutionary tracks for planetary-nebula nuclei of different masses (0.7 M⊙and 0.78M⊙). The model spectra for the system and a comparison with the observations demonstrate the possibility of refining the components’ effective temperatures if the quality of the spectra used is improved.



Optical spectrum variations of IL Cep A
Аннотация
The results of many-year uniform spectroscopic observations of the Herbig Ae/Be star IL Cep A are presented. Its Hα line has either a single or a barely resolved two-component emission profile. The Hβ emission line is clearly divided into two components with a deep central absorption. Smooth variations of the observed parameters of individual spectral lines over nine years are observed. The He I λ5876 Å line has a complex absorption profile, probably with superposed emission components. The NaI D1, D2 doublet exhibits weak changes due to variations in the circumstellar envelope. The variations observed in the stellar spectrum can be explained by either binarity or variations of the magnetic field in the stellar disk. Difficulties associated with both these possibilities are discussed.



Mass upflows and magnetic-field dynamics in a forming sunspot penumbra
Аннотация
The formation of the penumbra of the leading spot of the active region NOAA 11117 has been studied using data fromthe Solar DynamicObservatory (SDO). HMI data on longitudinal magnetic fields, line-of-sight velocities, and continuum images were used. The appearance of localized upflows between the umbra and undisturbed photosphere precedes the penumbra formation. The sizes of them reach 1.5″–2″ and the velocity increases to 1 km/s over several minutes. These localized upflows change themselves to a region of material flowing horizontally from the penumbra (the Evershed effect). The formation of individual spine namely fine radial element of the penumbra magnetic field with higher strength and lower inclination than in the surrounding is traced for the first time. The formation of the spine manifests itself as appearance of region of 2″–3″ in size with enhanced upflow near the sunspot umbra, protrusion in longitudinal-field contours on one side of the upwelling center, and the subsequent appearance of magnetic pole of opposite polarity on the other side of the upwelling. This process is accompanied by a bending of the contour marking the boundary of the undisturbed photosphere, which puts the upwelling center in a zone of higher brightness. One possible explanation for this is the emergence of hot magnetic tube. The appearance and growth of the sunspot spines results in the formation of the penumbra.



Motions and oscillations in a filament preceding its eruption
Аннотация
The Doppler motions in a filament and the underlying photosphere over the several days before its eruption are analyzed. A large filament in the northern hemisphere near the central meridian observed from August 31-September 2, 2014 erupted on September 2, 2014. The filament lost the bulk of its mass as a result of its eruption, and the process of its reconstruction had begun a day later. Observations of this filament in a spectral range encompassing the Hβ λ 486.1 nm (chromospheric) and Fe I λ 485.9 nm (photospheric) lines were carried out on the Horizontal Solar Telescope of the Sayan Solar Observatory on August 31-September 2, 2014. Analysis of the Doppler motions in and beneath the filament yielded the following results. Strong rotational motions were present in the filament over a prolonged period (the entire three days of observations). The coincidence of the steady-state motions of the photosphere and filament was disrupted at the moment of destabilization of the filament by the emergence of new magnetic flux. Short-period (about five-minute) photospheric oscillationswith a train-like character arose in filament from time to time several hours before the eruption. Large segments underwent nearly vertical oscillations in the initial phase of the ascent of the filament.



Lunar concrete: Prospects and challenges
Аннотация
The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.


