Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 61, № 9 (2017)

Article

Galactic orbits of selected companions of the Milky Way

Bajkova A., Bobylev V.

Аннотация

High-accuracy absolute proper motions, radial velocities, and distances have now been measured for a number of dwarf-galaxy companions of the Milky Way, making it possible to study their 3D dynamics. Galactic orbits for 11 such galaxies (Fornax, Sagittarius, Ursa Minor, LMC, SMC, Sculptor, Sextans, Carina, Draco, Leo I, Leo II) have been derived using two previously refined models for the Galactic potential with the Navarro–Frenk–White and Allen–Santillán expressions for the potential of the dark-matter halo, and two different masses for the Galaxy within 200 kpc—0.75 × 1012M and 1.45 × 1012M. The character of the orbits of most of these galaxies indicates that they are tightly gravitationally bound to the Milky Way, even with the lower-mass model for the gravitational potential. One exception is the most distant galaxy in the list, Leo I, whose orbit demonstrates that it is only weakly gravitationally bound, even using the higher-mass model of the gravitational potential.

Astronomy Reports. 2017;61(9):727-738
pages 727-738 views

A dynamo in a torus as an explanation of magnetic fields in the outer rings of galaxies

Mikhailov E.

Аннотация

It is currently generally believed that magnetic fields in the disks of spiral galaxies are generated by the dynamo mechanism, which is based on the joint action of differential rotation and the alpha effect, associated with turbulent motions in the interstellar gas. Together with their disks, outer rings are also encountered in galaxies, where magnetic fields may be present. In earlier studies, the generation of magnetic fields has been described in a planar approximation, whose essence is that the size of rings perpendicular to the plane of the galaxy is much smaller than their size in the radial direction. However, it is plausible that these sizesmay sometimes be comparable, so that it would be more logical to suppose that a ring has a toroidal form. A model for a dynamo in a toroidal ring is constructed in this study. This model describes the magnetic field using two functions, corresponding to the toroidal component of the field and the part of the vector potential characterizing its poloidal component. The possible generation of magnetic field in various cases is shown, with both quadrupolar symmetry (close to the fields obtained in the planar approximation) and dipolar symmetry (when two layers with oppositely directed magnetic fields form in the ring). The parameter values for which the generation of fields with one or the other type of symmetry is possible are estimated. The results can also be used to describe the evolution of the magnetic fields in other toroidal astrophysical objects.

Astronomy Reports. 2017;61(9):739-746
pages 739-746 views

Observations of giant pulses from B1237+25 (J1239+2453) at 111 MHz. Detection and classification

Kazantsev A., Potapov V.

Аннотация

An analysis of data from monitoring of individual pulses of the second-period pulsar PSR B1237+25 (J1239+2453) carried out on the Large Phased Array (LPA) of the Pushchino Radio Astronomy Observatory at 111 MHz during 2012–2015 is presented. The aim of this observing program is a search for anomalously strong and giant pulses. The regular generation of powerful individual pulses at the longitudes of three of five components in the main profile of PSR B1237+25 has been detected. The distribution of these strong pulses in flux density is bimodal, and has the power-law form characteristic for giant pulses, with power-law indices n = −1.26 ± 0.05 and −3.36 ± 0.34, which differentiates them from the regular pulses of pulsars, having a log–normal distribution. The characteristic pulse widths at the half-intensity level are 3–5 ms, which comprises 50–100% of the width of the corresponding component in the mean profile. The most powerful of the detected pulses had a peak flux density of 900 ± 160 Jy, and the strongest pulse exceeded the session-mean profile by a factor of 65.

Astronomy Reports. 2017;61(9):747-759
pages 747-759 views

Gas kinematics in high-mass star-forming regions from the Perseus spiral arm

Kirsanova M., Sobolev A., Thomasson M.

Аннотация

We present results of a survey of 14 star-forming regions from the Perseus spiral armin CS (2–1) and 13CO (1–0) lines with the Onsala Space Observatory 20 m telescope. Maps of 10 sources in both lines are obtained. For the remaining sources a map in just one line or a single-point spectrum is obtained. On the basis of newly obtained and published observational data we consider the relation between velocities of the “quasi-thermal” CS (2–1) line and 6.7 GHz methanol maser line in 24 high-mass star-forming regions in the Perseus arm. We show that, surprisingly, velocity ranges of 6.7 GHz methanol maser emission are predominantly red-shifted with respect to corresponding CS (2–1) line velocity ranges in the Perseus arm. We suggest that the predominance of the “red-shifted masers” in the Perseus arm could be related to the alignment of gas flows caused by the large-scalemotions in the Galaxy. Large-scale galactic shock related to the spiral structure is supposed to affect the local kinematics of the star-forming regions. Part of the Perseus arm, between galactic longitudes from 85° to 124° , does not contain blue-shifted masers at all. Radial velocities of the sources are the greatest in this particular part of the arm, so the velocity difference is clearly pronounced. 13CO (1–0) and CS (2–1) velocity maps of G183.35-0.58 show gas velocity difference between the center and the periphery of the molecular clump up to 1.2 km s−1. Similar situation is likely to occur in G85.40-0.00. This can correspond to the case when the large-scale shock wave entrains the outer parts of a molecular clump in motion while the dense central clump is less affected by the shock.

Astronomy Reports. 2017;61(9):760-774
pages 760-774 views

Localization of the magnetic field in a plasma flow in laboratory simulations of astrophysical jets at the KPF-4-PHOENIX installation

Mitrofanov K., Anan’ev S., Voitenko D., Krauz V., Astapenko G., Markoliya A., Myalton V.

Аннотация

The results of experiments aimed at investigating axial plasma flows forming during the compression of a current–plasma sheath are presented. These experiments were carried out at the KPF-4-PHOENIX plasma-focus installation, as part of a program of laboratory simulations of astrophysical jets. The plasma flows were generated in a discharge when the chamber was filled with the working gas (argon) at initial pressures of 0.5–2 Torr. Experimental data obtained using a magnetic probe and optical diagnostics are compared. The data obtained can be used to determine the location of trapped magnetic field relative to regions of intense optical glow in the plasma flow.

Astronomy Reports. 2017;61(9):775-782
pages 775-782 views

The anisotropy of kinetic and current helicity

Reshetnyak M.

Аннотация

A three-dimensional model for thermal convection with a dynamo in a rotating planar layer heated from below is used to investigate the behavior of the mean kinetic and current helicities. In spite of the presence of gravity and rotation, which introduce anisotropy into the system, the components of the helicity determined from the field components in the directions tangent and normal to the boundary have similar values. The existence of a separation by scale, when the current helicity has different signs on different spatial scales, is demonstrated. The number of regions where the sign of the helicity does not coincide with the sign of its mean value in that region is estimated (∼43−45% of the total number of regions). The estimates presented are relevant for interpretations of observations of solar activity and analysis of the properties of rotating magnetohydrodynamical turbulence.

Astronomy Reports. 2017;61(9):783-790
pages 783-790 views

Catalog of hard X-ray solar flares detected with Mars Odyssey/HEND from the Mars orbit in 2001–2016

Livshits M., Zimovets I., Golovin D., Nizamov B., Vybornov V., Mitrofanov I., Kozyrev A., Litvak M., Sanin A., Tretyakov V.

Аннотация

The study of nonstationary processes in the Sun is of great interest, and multi-wavelength observations and the registration of magnetic fields have been carried out using both ground-based telescopes and several specialized spacecraft in near-Earth orbits in recent years. However, the acquisition of new, reliable information on their hard X-ray radiation remains necessary, in particular, if the corresponding spacecraft provide additional information, e.g., in regard to flare observations from directions other than the Sun–Earth direction. This paper presents a catalog of powerful solar flares registered by the High Energy Neutron Detector (HEND) designed at the Space Research Institute of the Russian Academy of Sciences. HEND is mounted onboard the 2001Mars Odyssey spacecraft. It operated successfully during the flight to Mars and is currently operating in near-Mars orbit. Apart from neutrons, HEND is sensitive to hard X-ray (up to 300 keV) and gamma-ray radiation (above 300 keV). This radiation is registered by two scintillators: an outer one that is sensitive to photons above 40 keV and an inner one sensitive to photons above 200 keV. The catalog was created using a new procedure for calibration of the data. For the most powerful 60 solar flares in the visible and far sides of the Sun (for a terrestrial observer), time profiles of the flare radiation summed over all channels of the X-ray, and in some cases the gamma-ray, bands are provided, as well as spectra and characteristics of power-law fits. The results of previous studies of the Sun using HEND and the potential for further use of these data are discussed.

Astronomy Reports. 2017;61(9):791-804
pages 791-804 views

Evidence for shock generation in the solar corona in the absence of coronal mass ejections

Eselevich V., Eselevich M., Zimovets I., Sharykin I.

Аннотация

The solar event SOL2012–10–23T03:13, which was associated with a X1.8 flare without an accompanying coronal mass ejection (CME) and with a Type II radio burst, is analyzed. A method for constructing the spatial and temporal profiles of the difference brightness detected in the AIA/SDOUVand EUV channels is used together with the analysis of the Type II radio burst. The formation and propagation of a region of compression preceded by a collisional shock detected at distances R < 1.3R from the center of the Sun is observed in this event (R is the solar radius). Comparison with a similar event studied earlier, SOL2011–02–28T07:34 [1], suggests that the region of compression and shock could be due to a transient (impulsive) action exerted on the surrounding plasma by an eruptive, high-temperature magnetic rope. The initial instability and eruption of this rope could be initiated by emerging magnetic flux, and its heating from magnetic reconnection. The cessation of the eruption of the rope could result from its interaction with surrounding magnetic structures (coronal loops).

Astronomy Reports. 2017;61(9):805-819
pages 805-819 views

The high-resolution Echelle Spectrograph of the 6-m telescope of the special astrophysical observatory

Panchuk V., Klochkova V., Yushkin M.

Аннотация

Results of the development and implementation of the Nasmyth Echelle Spectrograph (NES) of the 6-m telescope of the Special AstrophysicalObservatory are presented. The NES is a tunable spectral system with a large-diameter collimated beam that is suitable for various types of observations. Selected scientific programs carried out by the developers of the instrument are described as illustrations of its application. The possible development of the spectrograph with the 6-m telescope over the coming 19 years is discussed.

Astronomy Reports. 2017;61(9):820-831
pages 820-831 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».