Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 61, № 1 (2017)

Article

Variability of the OH and H2O maser emission toward AS 501

Ashimbaeva N., Colom P., Krasnov V., Lekht E., Pashchenko M., Rudnitskii G., Tolmachev A.

Аннотация

The results of observations of OH (λ = 18 cm) and H2O (λ = 1.35 cm) masers toward AS 501 obtained with the Nançay Observatory Radio Telescope (France) and the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia), respectively, are presented. Nine cycles of H2O maser activity ranging from 2.8 to 6.0 years were detected, identifying AS 501 as an irregular variable star. Zeeman splitting was found only in the 1612-MHz satellite line at −59.2 km/s. The splitting is 0.11 km/s, corresponding to a line-of-sight magnetic field strength of 0.48 mG. The field is directed toward the observer. The detected radial-velocity drift of the H2O emission features can be explained in a model with elongated filaments with radial-velocity gradients.

Astronomy Reports. 2017;61(1):16-29
pages 16-29 views

A “tsunami” in the protoplanetary disk of SV Cep

Shenavrin V., Grinin V., Rostopchina-Shakhovskaya A., Demidova T., Shakhovskoi D., Belan S.

Аннотация

The results of ~15 years of photometric observations of the UX Ori star SV Cep in the near-infrared (JHKL) are presented. They demonstrate the presence of a cyclic component with a period of ~7 years in the variations of the IR fluxes. This is clearly seen in all four IR bands, but is absent in the optical. The variation amplitude is highest in the K band: ΔK ≈ 0.68m. The shape of the variations differs slightly in the transition from J to L. However, it is reproduced with good accuracy during two cycles, suggesting a periodic process is observed. If the periodic perturbations in the circumstellar disk of SV Cep are due to a companion’s orbitalmotion, the orbital semi-major axis should be ~5AU, foramass of SVCep of 2.6M. The absence of a seven-year period in the optical light curve of SV Cep means that the observed period cannot be due to variations in the circumstellar extinction. The IR brightness variations could be due to the companion’s motion along an eccentric orbit, resulting in a periodic modulation of the rate of accretion onto the star.

Astronomy Reports. 2017;61(1):38-46
pages 38-46 views

High-velocity stars as a result of encounters between stars and massive binary black holes in galactic nuclei

Zhuiko S., Orlov V., Shirokova K.

Аннотация

Numerical simulations of the motions of stars in the gravitational fields of binary black holes with various component mass ratios have been carried out. Two models are considered: (1) the two-body problem with two fixed centers; (2) the general three-body problem. The first model is applicable only over short times ΔtT, where T is the period of the binary system. The second model is applicable at all times except for during close encounters of stars with one of the binary components, r ≤ 0.00002 pc, where r is the distance from the star to the nearer black hole. In very close passages, relativistic corrections must be taken into account. Estimates of the probability of formation of high-velocity stars as a result of such interactions are obtained. It is shown that this mechanism is not suitable for the nucleus of our Galaxy due to the probable absence of a second massive black hole in the central region of the Galaxy.

Astronomy Reports. 2017;61(1):47-52
pages 47-52 views

Atmospheric chemical composition of the peculiar carbon giant TU Gem

Yakovina L., Polinovskii G., Pavlenko Y., Kuznetsov M.

Аннотация

The evolutionary status of the bright peculiar carbon giant TU Gemis fairly uncertain. The possibility that this is aCH star—aGalactic halo star with characteristic chemical-composition anomalies—is considered. Unfortunately, data on the atmospheric chemical composition of TUGem are relatively few and are ambiguous. The results of an analysis of a moderate-resolution optical and near-infrared spectrum of TU Gem obtained on the 2-m telescope of Terskol Peak Observatory (Northern Caucasus) is presented. The atmospheric parameters of TU Gem Teff = 3100 K, C/O = 1.10, and [N/Fe] = 0.0 for the derived metallicity [Fe/H] = 0.0 are taken from [1]. The abundances of Na, Mg, Ca, Ti, and Cr are estimated to be normal or slightly enhanced, and the lithium abundance is log N(Li) = +0.1. The abundances of s-process elements are substantially enhanced in the atmosphere of TU Gem, namely, [s/Fe] ≈ 2, for both light and heavy s-process elements. The range of uncertainty in [Fe/H] is 0.0−0.3, and the uncertainties in other estimates are Δ[M/Fe]≈ ±0.3 and Δ[s/Fe] = ±0.5. The results show that TU Gem is an anomalous carbon giant, but not a CH star.

Astronomy Reports. 2017;61(1):53-69
pages 53-69 views

Filaments and the underlying surface from He I and Hα line observations

Baranovskii E., Stepanyan N., Tarashchuk V., Shtertser N.

Аннотация

Bright bands are observed along filaments in the He I 1083 nm line, while both bright and dark bands are observed along Hα 656.3 nm filaments. The range of brightness variations near He I filaments is 1.005–1.10 times the unperturbed brightness, with an average of 1.031 ± 0.01, while this range is 0.91–1.5 times the unperturbed brightness for Hα filaments. The physical state of the matter in these bands is investigated. Computations of the band brightness have been carried out for various chromospheric models, aimed at explaining the observed features of the bands. Two types of models are considered: with temperature or density variations in the upper chromosphere, and with temperature variations in the middle and lower chromosphere. In the first type of model, the brightness in the He I line is changed, but the Hα brightness is not. In the second type of model, only the Hα brightness is changed. Using the variations of the chromospheric parameters and both types of models, we obtained various combinations of band brightnesses in the He I line and in Hα. The brightnesses of regions were estimated by calculating the profiles of the He I and Hα lines in the corresponding models in a non-LTE approximation. A comparison of the observed and calculated quantities indicates that the enhancement in the brightness in the He I line is due to a decrease in temperature or density in the upper chromosphere (where the temperatures are about 10 000–24 000 K). The enhancement and dimming of the brightness in Hα are due to an increase or decrease of the temperature in the middle and lower chromosphere (where the temperatures are 6000–9000 K) by 800–1000 K. The dependence of the band brightness on distance from the center of the solar disk is also considered. The brightness in the He I line increases from the center to the limb by 2–4%. Computations of the center–limb brightness variaions correspond to the observed results.

Astronomy Reports. 2017;61(1):74-79
pages 74-79 views

Estimation of the accuracy of methods for determining component masses for low-mass X-ray binary systems

Antokhina E., Petrov V., Cherepashchuk A.

Аннотация

Modern modeling of the population of low-mass X-ray binary systems containing black holes applying standard assumptions leads to a lack of agreement between the modeled and observed mass distributions for the optical components, with the observed masses being lower. This makes the task of estimating the systematic errors in the derived component masses due to imperfect models relevant. To estimate the influence of systematic errors in the derived masses of stars in X-ray binary systems, we considered two approximations for the tidally deformed star in a Roche model. Approximating the star as a sphere with a volume equal to that of the Roche lobe leads to slight overestimation of the equatorial rotational velocity Vrot sin i, and hence to slight underestimation of the mass ratio q = Mx/Mv. Approximating the star as a flat, circular disk with constant local line profiles and a linear limb-darkening law (a classical rotational broadeningmodel) is an appreciably cruder approach, and leads to overestimation of Vrot sin i by about 20%. In the case of high values of q = Mx/Mv, this approximation leads to substantial underestimation of the mass ratio q, which can reach several tens of percent. The mass of the optical star is overestimated by a factor of 1.5 in this case, while the mass of the black hole is changed only slightly. Since most estimates of component mass ratios for X-ray binary systems are carried out using a classical rotational broadening model for the lines, this leads to the need for appreciable corrections to (reductions of) previously published masses for the optical stars, which enhances the contradiction with the standard evolutionary scenario for low-mass X-ray binaries containing black holes.

Astronomy Reports. 2017;61(1):1-15
pages 1-15 views

Detection of sources of periodic radio emission with the Large Phased Array of the Lebedev Physical Institute

Rodin A., Oreshko V., Samodurov V.

Аннотация

A method for searching for new periodic radio sources is described. The method is based on the spectral analysis of data from daily monitoring of the sky on the Large Phased Antenna (LPA) of the Pushchino Radio Astronomy Observatory at 111 MHz in a 2.5-MHz band. The 96-beam directivity pattern of the LPA is used. The signal is received in six 0.42-MHz frequency channels with a sampling rate of 0.1 s. The duration of the processed survey is four months. The particulars of detecting periodic sources with the LPA are considered. In total, 16 such radio sources have been detected, for which equatorial and Galactic coordinates, periods, and dispersion measures are given.

Astronomy Reports. 2017;61(1):30-37
pages 30-37 views

Regularities in the response of spectral lines to small perturbations in physical quantities in the photosphere

Mozharovskii S.

Аннотация

Numerical simulations are used to establish a number of dependencies between small perturbations in physical quantities in the photosphere and small variations in the Stokes profiles of spectral lines. A perturbation of any physical quantity in the model photosphere shifts every point in a line profile in the direction perpendicular to the tangent to the profile at that point. The actions on the wing of a spectral line of perturbations in the magnetic field and radial velocity are equivalent for a particular ratio of these perturbations (if the line is fully split in the magnetic field). If the response of part of a line wing is considered as a shift in wavelength, the area under the curve representing the response to perturbations in the magnetic field and radial velocity has a simple physical meaning.

Astronomy Reports. 2017;61(1):70-73
pages 70-73 views

General catalogue of variable stars: Version GCVS 5.1

Samus’ N., Kazarovets E., Durlevich O., Kireeva N., Pastukhova E.

Аннотация

Work aimed at compiling detailed catalogs of variable stars in the Galaxy, which has been carried out continuously by Moscow variable-star researchers since 1946 on behalf of the International Astronomical Union, has entered the stage of the publication of the 5th, completely electronic edition of the General Catalogue of Variable Stars (GCVS). This paper describes the requirements for the contents of the 5th edition and the current state of the catalog in its new version, GCVS 5.1. The complete revision of information for variable stars in the constellation Carina and the compilation of the 81st Name-list of Variable Stars are considered as examples of work on the 5th edition. The GCVS 5.1 is freely accessible on the Internet. We recommend the present paper as a unified reference to the 5th edition of the GCVS.

Astronomy Reports. 2017;61(1):80-88
pages 80-88 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».