Ашық рұқсат Ашық рұқсат  Рұқсат жабық Рұқсат берілді  Рұқсат жабық Тек жазылушылар үшін

Том 60, № 1 (2016)

Article

Peculiarities of α-element abundances in Galactic open clusters

Marsakov V., Gozha M., Koval’ V., Shpigel’ L.

Аннотация

A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion (Zmax2 + 4e2)1/2 > 0.40 and in field stars of the Galactic thin disk (Zmax is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] < -0.1 display lower relative abundances of the primary a elements than do field stars. The low [O, Mg/Fe] ratios of these clusters can be understood if the high-velocity clouds that gave rise to them were formed of interstellar material from regions where the star-formation rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in field stars. This can be understood if clusters with [Fe/H] > -0.1 formed as a result of interactions between metal-rich clouds with intermediate velocities and the interstellar medium of the Galactic disk; such clouds could form from returning gas in a so-called “Galactic fountain.”

Astronomy Reports. 2016;60(1):43-60
pages 43-60 views

Peculiarities of the abundances of neutron-capture elements in Galactic open clusters

Marsakov V., Gozha M., Koval’ V., Shpigel’ L.

Аннотация

The properties of the relative abundances of rapid and slow neutron-capture elements are studied using a catalog containing spectroscopic abundance determinations for 14 elements produced in various nuclear-synthesis processes for 90 open clusters. The catalog also contains the positions, ages, velocities, and elements of the Galactic orbits of the clusters. The relative abundances of both r-elements (Eu) and s-elements (Y, Ba, La, and Ce) in clusters with high, elongated orbits and in field stars of the Galactic thin disk display different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits, supporting the view that these objects have different natures. In young clusters, not only barium, but also the three other studied s-elements display significantly higher relative abundances than field stars of the same metallicity. The relative abundances of Eu are lower in highmetallicity clusters ([Fe/H] > -0.1) with high, elongated orbits than in field giants, on average, while the [Eu/Fe] ratios in lower-metallicity clusters are the same as those in field stars, on average, although with a large scatter. The metallicity dependence of the [O, Mg/Eu] ratios in clusters with high, elongated orbits and in field stars are substantially different. These and other described properties of the Eu abundances, together with the properties of the abundances of primary a-elements, can be understood in a natural way if clusters with high, elongated orbits with different metallicities formed as a result of interactions of two types of high-velocity clouds with the interstellar medium of the Galactic disk: low-metallicity highvelocity clouds that formed from “primordial” gas, and high-metallicity clouds with intermediate velocities that formed in “Galactic fountains.”

Astronomy Reports. 2016;60(1):61-72
pages 61-72 views

The structure of the stellar disks of southern S0 galaxies in sparse environments

Sil’chenko O., Kniazev A., Chudakova E.

Аннотация

Surface photometry data are presented for 12 southern lenticular galaxies located in regions of low density. Digital images in the gri bands were obtained on the LCOGT network of meter-class telescopes. Structural parameters of the global stellar disks of the galaxies are calculated—the exponential scale and relative thickness. The presence of substructure in the disks is noted; in particular, more than half the studied galaxies possess ring structures, sometimes more than one. The color maps presented indicate complex evolution of the substructure of the disks of lenticular galaxies: they can be classified as blue (ongoing star formation) or red (concentration of dust). The rings do not always lie in the main plane of the disk; there are cases of clearly inclined, or even polar, compact rings.

Astronomy Reports. 2016;60(1):73-86
pages 73-86 views

Formation and evolution of inclined accretion disks in intermediate polars

Fateeva A., Zhilkin A., Bisikalo D.

Аннотация

The results of 3D modeling of the formation of the accretion disks of intermediate polars are presented. A model with misaligned rotation axes of accretor and the orbit is onsidered, in which it is assumed that the white dwarf has a dipolar magnetic field with its symmetry axis inclined to the whitedwarf rotation and orbital axes. The computations show that, in the early stages of formation of the disk, the action of magnetic field is able to create the initial (seed) inclination of the disk. This inclination is then supported mainly by the dynamical pressure of the flow from the inner Lagrangian point L1. As themass of the disk increases, the inclination disappears. Under certain conditions, the disk inclination does not arise in systems with misaligned white-dwarf rotation and orbital axes. The influence of the magnetic field and asynchronous rotation of the accretor may result in the formation of spiral waves in the disk with amplitudes sufficient to be detected observationally.

Astronomy Reports. 2016;60(1):87-98
pages 87-98 views

Envelope structure in T Tauri binary stars with subsonic orbital motion of one component

Sytov A., Bisikalo D., Kaigorodov P.

Аннотация

Results of numerical modeling of the gas dynamics ofmaterial in the envelopes of T Tauri binary stars with a small component mass ratios (q = 0.08) are reported. In such systems, the less massive component is moving at a supersonic velocity, and the more massive component can move with either a subsonic or supersonic velocity. The modeling results show that the morphology of the flow changes substantially in the transition from supersonic to subsonic motion of the massive component. In particular, one of the two bow shocks vanishes, flows ofmaterial in the system are redistributed, and the characteristics of the accretion disks change. In addition, the effect of the change in the accretion mode on the evolution of the binary system and the possibility of recovering some parameters of the system from observational manifestations of shocks in the circumstellar envelope are considered.

Astronomy Reports. 2016;60(1):99-105
pages 99-105 views

The binary systems IC 10 X-1 and NGC 300 X-1: Accretion of matter from an intense Wolf–Rayet stellar wind onto a black hole

Tutukov A., Fedorova A.

Аннотация

The current evolutionary stage of the binary systems IC 10 X-1 and NGC 300 X-1, which contain a massive black hole and a Wolf–Rayet star with a strong stellar wind that does not fill its Roche lobe, is considered. The high X-ray luminosity and X-ray properties testify to the presence of accretion disks in these systems. The consistency of the conditions for the existence of such a disk and the possibility of reproducing the observed X-ray luminosity in the framework of the Bondi–Hoyle–Littleton theory for a spherically symmetric stellar wind is analyzed. A brief review of information about the mass-loss rates of Wolf–Rayet stars and the speeds of their stellar winds is given. The evolution of these systems at the current stage is computed. Estimates made using the derived parameters show that it is not possible to achieve consistency, since the conditions for the existence of an accretion disk require that the speed of the Wolf–Rayetwind be appreciably lower than is required to reproduce the observedX-ray luminosity. Several explanations of this situation are possible: (1) the real pattern of the motion of the stellar-wind material in the binary is substantially more complex than is assumed in the Bondi–Hoyle–Littleton theory, changing the conditions for the formation of an accretion disk and influencing the accretion rate onto the black hole; (2) some of the accreting material leaves the accretor due to X-ray heating; (3) the accretion efficiency in these systems is nearly an order of magnitude lower than in the case of accretion through a thin disk onto a non-rotating black hole; (4) the intensity of the Wolf–Rayet wind is one to two orders of magnitude lower than has been suggested by modern studies.

Astronomy Reports. 2016;60(1):106-115
pages 106-115 views

Formation of ring structures in galactic disks during close passages of galaxies

Tutukov A., Fedorova A.

Аннотация

The formation of ring structures in galactic disks is investigated. It is shown that, in addition to the known mechanism of forming rings in “head-on” collisions between galaxies, ring structures can be formed during close passages of galaxies if the perturbing galaxy moves in a plane close to the equatorial plane of the perturbed disk galaxy, opposite to the direction of rotation of the disk. Numerical simulations of the formation of structures in the disk of a massive galaxy undergoing a passage with another galaxy are considered. The results of these cmputations show the formation of pronounced ring structures in the galactic disk when the initial inclination of the trajectory of the perturbing galaxy to the equatorial plane of the perturbed galaxy is no more than ~25°. However, the probability of close passages of galaxies with these parameters is small, as is the probability of head-on collisions. The characteristic time scale for the existence of pronounced rings is of order the dynamical time scale at the edge of the galaxy, 200–300 million years, close to the corresponding time for head-on collisions. The evolution of the rings has the same character in both cases: they gradually expand and move toward the periphery of the galaxy. The results of these simulations can also be applied to a close passage of one star by another star with a protoplanetary disk. According to the computation results, the characteristic time scale for the existence of pronounced rings in such a protoplanetary disk depends mainly on the size of the disk; this time scale can reach several tens of thousands of years for a disk radius of about 1000 AU. The formation of ring structures in such a disk could influence the formation and evolution of planetesimals, and possibly the character of the formation of planets and the distribution of their orbital semi-major axes.

Astronomy Reports. 2016;60(1):116-128
pages 116-128 views

Elemental abundances in atmospheres of cool dwarfs with solar-like activity

Antipova L., Boyarchuk A.

Аннотация

The elemental abundances in the atmosphere of the red dwarf HD 32147, which belongs to the HR 1614 moving groups, are analyzed. The atmospheric parameters determined from spectroscopic data (the condition of equal abundances for neutral and ionized atoms of a given element) differ considerably from those derived from photometry and parallax data. The abundances of several elements are also anomalous, with the anomaly increasing with decreasing ionization potential. It is concluded that this star is a red dwarf displaying solar-like activity; i.e., having dark (cool) spots on its surface, which may sometimes be considerable in size. Modeling synthetic spectra of stars with cool spots on their surfaces, with the spectral lines consisting of two components formed in media with different temperatures, indicate that the spectroscopic atmospheric parameters derived in such cases are incorrect; this can also explain the observed dependence of the elemental abundances on the corresponding ionization potentials. This leads to the conclusion thatHD32147 is indeed a star with solar-like activity. Several other such stars considered as examples display the same anomalies as those of HD 32147. These modeling results are also valid for Ap and Am stars, and are able to explain short-wavelength observations of the Sun and some stars (the FIP effect).

Astronomy Reports. 2016;60(1):145-162
pages 145-162 views

Possible reasons for the frequency splitting of the harmonics of type II solar radio bursts

Eselevich V., Eselevich M., Zimovets I.

Аннотация

AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.

Astronomy Reports. 2016;60(1):163-173
pages 163-173 views

The force function of two rigid celestial bodies in Delaunay–Andoyer variables

Zlenko A.

Аннотация

Two new expansions of the force function of two rigid celestial bodies of finite size and arbitrary shape are obtained in Delaunay–Andoyer variables with any degree of accuracy, in the form of a partial sum of an eight dimensional Fourier series. These expansions of the force function contain products of expressions for the momenta and Stokes constants in terms of sines and cosines, whose arguments are linear combinations of the Delaunay and Andoyer angular variables. These representations of the force function are compact and convenient for applications in various problems in celestial mechanics and astrodynamics.

Astronomy Reports. 2016;60(1):174-181
pages 174-181 views

Scientific problems addressed by the Spektr-UV space project (world space Observatory—Ultraviolet)

Boyarchuk A., Shustov B., Savanov I., Sachkov M., Bisikalo D., Mashonkina L., Wiebe D., Shematovich V., Shchekinov Y., Ryabchikova T., Chugai N., Ivanov P., Voshchinnikov N., Gomez de Castro A., Lamzin S., Piskunov N., Ayres T., Strassmeier K., Jeffrey S., Zwintz S., Shulyak D., Gérard J., Hubert B., Fossati L., Lammer H., Werner K., Zhilkin A., Kaigorodov P., Sichevskii S., Ustamuich S., Kanev E., Kil’pio E.

Аннотация

The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory—Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115–310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.

Astronomy Reports. 2016;60(1):1-42
pages 1-42 views

Observations of Extended Green Objects in the 1.35-cm H2O Line on the 22-m Pushchino Radio Telescope

Rudnitskii G., Lekht E., Bayandina O., Val’tts I., Khan E.

Аннотация

Observations of H2O maser sources at 1.35 cm associated with extended regions of 4.5-µm emission (indicated as “green” on Spitzer survey maps—so-called Extended Green Objects, EGOs) are reported. EGOs are considered as characteristic signposts of regions of formation of massive stars, which host high-velocity outflows, as well as methanol, water, and hydroxyl masers. The observations were carried out in January–May 2015 on the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory. The sample studied includes 24 EGOs north of declination -29° taken from the Spitzer GLIMPSE survey, together with one of the brightest Class I methanol masers G6.05-1.45 (M8E) and the Class I methanol maser in an IRDC G359.94+0.17. H2O maser emission was detected toward 11 of the EGOs: G11.94-0.62, G14.33-0.64, G16.59-0.06, G23.01-0.41, G24.943+0.074, G28.83-0.25, G34.3+0.2, G34.403+0.233, G35.20-0.74, G45.47+0.07, and G49.267-0.337. These including the well known H2O maser in the W44 region, G34.3+0.2. H2O emission from G28.83-0.25 was detected for the first time, at 77.6 km/s, with a flux density of 19 Jy in January and 16 Jy in February 2015. The source was probably caught at an early stage of the propagation of a shock wave. The Class I methanol masers G359.94+0.17 and G6.05-1.45 (M8E) and 13 of the EGOs were not detected in the H2O line, with 3s upper limits of ~6-7 Jy. Spectra and maser-emission parameters are given for the detected H2Omasers, for some of which strong variability of the H2O maser emission was observed. The detected H2Omasers, together with the Class I methanol masers and extended 4.5-µm emission, are associated with a very early stage in the development of young stellar objects in the regions of the EGOs. However, this sample of EGOs is not uniform. The presence of 44-GHz Class I methanol masers together with EGOs cannot be considered the only sign of early stages of star formation.

Astronomy Reports. 2016;60(1):129-144
pages 129-144 views