Search for differences in the velocities and directions of the kiloparsec-scale jets of quasars with and without X-ray emission


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The X-ray emission of the kiloparsec-scale jets of core-dominant quasars is usually interpreted as inverse Compton scattering on the cosmic microwave background (CMB) emission (Sample I). By analogy with the situation on parsec scales, ultrarelativistic motion along a jet oriented at a small angle to the line of sight is usually invoked to explain the X-ray emission while also satisfying the condition of equipartition between the energies associated with the relativistic particles and the magnetic field on kiloparsec scales. This leads to an increase in the energy flux of the CMB radiation in the rest frame of the kiloparsec-scale jets. Consequently, the intensity of the CMB radiation is enhanced to the level required for detectable X-ray emission. This suggests that kiloparsec jets of quasars with similar extents and radio flux densities that are not detected in the X-ray (Sample II) could have subrelativistic speeds and larger angles to the line of sight, due to deceleration and bending of the jet between parsec and kiloparsec scales. This suggests the possible presence of differences in the distributions of the difference between the position angle for the parsec-scale and kiloparsec-scale jets for these two groups of quasars; this is not confirmed by a statistical analysis of the data for Samples I and II. It is deduced that most of the sources considered exhibit bending of their jets by less than about 1.5 times the angle of the parsec-scale jet to the line of sight. This suggests that the X-ray emission is generated by other mechanisms that there is no equipartition.

About the authors

M. S. Butuzova

Crimean Astrophysical Observatory

Author for correspondence.
Email: aniramtiger@gmail.com
Russian Federation, Nauchny, Crimean Republic


Copyright (c) 2016 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies