Synthesis of Stabilization Control on Outputs for a Class of Continuous and Pulse-Modulated Undefined Systems


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Consider system

\(\left\{ {\begin{array}{*{20}{c}}
{{{\dot x}_1} = {\varphi _1}(.) + {\rho _1}{x_{l + 1}},} \\
{{{\dot x}_m} = {\varphi _m}(.) + {\rho _m}{x_n},} \\
{{{\dot x}_{m + 1}} = {\varphi _{m + 1}}(.) + {\mu _1},} \\
{{{\dot x}_n} = {\varphi _n}(.) + {\mu _1},}
\end{array}} \right.\)
where x1, …, and xn is the state of the system, u1, …, and ul are controls, n/l is not an integer, and l ≥ 2. It is supposed that only outputs x1, …, and xl are measurable, (l > n) and ϕi(·) are non-anticipating arbitrary functionals, and 0 < ρ–≤ ρi (t, x1, …, and xl) ≤ ρ+. Using the backstepping method, we construct the square Lyapunov function and stabilize the control for the global exponential stability of the closed loop system. The stabilization by means of synchronous modulators with a sufficiently high impulsion frequency is considered as well.

Авторлар туралы

I. Zuber

Institute for Problems in Mechanical Engineering

Хат алмасуға жауапты Автор.
Email: zuber.yanikum@gmail.com
Ресей, St. Petersburg, 199178

A. Gelig

St. Petersburg State University

Email: zuber.yanikum@gmail.com
Ресей, St. Petersburg, 199034

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018