The Strong Continuity of Convex Functions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A convex function defined on an open convex set of a finite-dimensional space is known to be continuous at every point of this set. In fact, a convex function has a strengthened continuity property. The notion of strong continuity is introduced in this study to show that a convex function has this property. The proof is based on only the definition of convexity and Jensen’s inequality. The definition of strong continuity involves a constant (the constant of strong continuity). An unimprovable value of this constant is given in the case of convex functions. The constant of strong continuity depends, in particular, on the form of a norm introduced in the space of arguments of a convex function. The polyhedral norm is of particular interest. It is straightforward to calculate the constant of strong continuity when it is used. This requires a finite number of values of the convex function.

Sobre autores

V. Malozemov

St. Petersburg State University

Autor responsável pela correspondência
Email: v.malozemov@spbu.ru
Rússia, St. Petersburg, 199034

A. Plotkin

St. Petersburg State University

Email: v.malozemov@spbu.ru
Rússia, St. Petersburg, 199034

G. Tamasyan

St. Petersburg State University

Email: v.malozemov@spbu.ru
Rússia, St. Petersburg, 199034

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018