On the Stability of the Zero Solution of a Second-Order Differential Equation under a Periodic Perturbation of the Center
- Autores: Dorodenkov A.A.1
-
Afiliações:
- St. Petersburg Electrotechnical University “LETI,”
- Edição: Volume 51, Nº 1 (2018)
- Páginas: 31-35
- Seção: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/185927
- DOI: https://doi.org/10.3103/S106345411801003X
- ID: 185927
Citar
Resumo
Small periodic perturbations of the oscillator \(\ddot x + {x^{2n}}\) sgn x = Y(t, x, \(\dot x\)) are considered, where n < 1 is a positive integer and the right-hand side is a small perturbation periodic in t, which is an analytic function in \(\dot x\) and x in a neighborhood of the origin. New Lyapunov-type periodic functions are introduced and used to investigate the stability of the equilibrium position of the given equation. Sufficient conditions for asymptotic stability and instability are given.
Palavras-chave
Sobre autores
A. Dorodenkov
St. Petersburg Electrotechnical University “LETI,”
Autor responsável pela correspondência
Email: alex_meth@mail.ru
Rússia, St. Petersburg, 197376
Arquivos suplementares
