On the Stability of the Zero Solution of a Second-Order Differential Equation under a Periodic Perturbation of the Center


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Small periodic perturbations of the oscillator \(\ddot x + {x^{2n}}\) sgn x = Y(t, x, \(\dot x\)) are considered, where n < 1 is a positive integer and the right-hand side is a small perturbation periodic in t, which is an analytic function in \(\dot x\) and x in a neighborhood of the origin. New Lyapunov-type periodic functions are introduced and used to investigate the stability of the equilibrium position of the given equation. Sufficient conditions for asymptotic stability and instability are given.

Sobre autores

A. Dorodenkov

St. Petersburg Electrotechnical University “LETI,”

Autor responsável pela correspondência
Email: alex_meth@mail.ru
Rússia, St. Petersburg, 197376

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018