On the Stability of the Zero Solution of a Second-Order Differential Equation under a Periodic Perturbation of the Center
- Авторлар: Dorodenkov A.A.1
-
Мекемелер:
- St. Petersburg Electrotechnical University “LETI,”
- Шығарылым: Том 51, № 1 (2018)
- Беттер: 31-35
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/185927
- DOI: https://doi.org/10.3103/S106345411801003X
- ID: 185927
Дәйексөз келтіру
Аннотация
Small periodic perturbations of the oscillator \(\ddot x + {x^{2n}}\) sgn x = Y(t, x, \(\dot x\)) are considered, where n < 1 is a positive integer and the right-hand side is a small perturbation periodic in t, which is an analytic function in \(\dot x\) and x in a neighborhood of the origin. New Lyapunov-type periodic functions are introduced and used to investigate the stability of the equilibrium position of the given equation. Sufficient conditions for asymptotic stability and instability are given.
Негізгі сөздер
Авторлар туралы
A. Dorodenkov
St. Petersburg Electrotechnical University “LETI,”
Хат алмасуға жауапты Автор.
Email: alex_meth@mail.ru
Ресей, St. Petersburg, 197376
Қосымша файлдар
