Honda Formal Module in an Unramified p-Extension of a Local Field as a Galois Module


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a fixed rational prime number p, consider a chain of finite extensions of fields K0/ℚp, K/K0, L/K, and M/L, where K/K0 is an unramified extension and M/L is Galois extension with Galois group G. Suppose that a one-dimensional Honda formal group F over the ring \(\mathcal{O}_K\) relative to the extension K/K0 and a uniformizing element π ∈ K0 is given. This paper studies the structure of \(F(\mathfrak{m}_M)\) as an \(\mathcal{O}_{K_0}\)[G]-module for an unramified p-extension M/L provided that \(W_F\cap{F({\frak{m}}_L)}=W_F\cap{F({\frak{m}}_M)}=W_F^s\) for some s ≥ 1, where WFs is the πs-torsion and WF = ∪n=1WFn is the complete π-torsion of a fixed algebraic closure Kalg of the field K.

作者简介

T. Hakobyan

St. Petersburg State University

编辑信件的主要联系方式.
Email: tigran19931026@gmail.com
俄罗斯联邦, St. Petersburg, 199034

S. Vostokov

St. Petersburg State University

Email: tigran19931026@gmail.com
俄罗斯联邦, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018