To the question of stability of periodic points of three-dimensional diffeomorphisms
- Авторлар: Vasilieva E.V.1
-
Мекемелер:
- St. Petersburg State University, Universitetskaya nab. 7/9
- Шығарылым: Том 50, № 2 (2017)
- Беттер: 111-116
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/185725
- DOI: https://doi.org/10.3103/S1063454117020133
- ID: 185725
Дәйексөз келтіру
Аннотация
Self-diffeomorphisms of three-dimensional space with a hyperbolic fixed point at the origin and a nontransversal point homoclinic to it are considered. It is assumed that the Jacobian matrix of the initial diffeomorphism has complex eigenvalues at the origin. It is shown that, under certain conditions imposed mainly on the character of tangency of the stable and unstable manifolds, a neighborhood of the nontransversal homoclinic point contains an infinite set of stable periodic points whose characteristic exponents are bounded away from zero.
Авторлар туралы
E. Vasilieva
St. Petersburg State University, Universitetskaya nab. 7/9
Хат алмасуға жауапты Автор.
Email: ekvas1962@mail.ru
Ресей, St. Petersburg, 199034
Қосымша файлдар
