To the question of stability of periodic points of three-dimensional diffeomorphisms


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Self-diffeomorphisms of three-dimensional space with a hyperbolic fixed point at the origin and a nontransversal point homoclinic to it are considered. It is assumed that the Jacobian matrix of the initial diffeomorphism has complex eigenvalues at the origin. It is shown that, under certain conditions imposed mainly on the character of tangency of the stable and unstable manifolds, a neighborhood of the nontransversal homoclinic point contains an infinite set of stable periodic points whose characteristic exponents are bounded away from zero.

Авторлар туралы

E. Vasilieva

St. Petersburg State University, Universitetskaya nab. 7/9

Хат алмасуға жауапты Автор.
Email: ekvas1962@mail.ru
Ресей, St. Petersburg, 199034

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2017