The structure of separable Dynkin algebras


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract Dynkin algebras are studied. Such algebras form a useful instrument for discussing probabilities in a rather natural context. Abstractness means the absence of a set-theoretic structure of elements in such algebras. A large useful class of abstract algebras, separable Dynkin algebras, is introduced, and the simplest example of a nonseparable algebra is given. Separability allows us to define appropriate variants of Boolean versions of the intersection and union operations on elements. In general, such operations are defined only partially. Some properties of separable algebras are proved and used to obtain the standard intersection and union properties, including associativity and distributivity, in the case where the corresponding operations are applicable. The established facts make it possible to define Boolean subalgebras in a separable Dynkin algebra and check the coincidence of the introduced version of the definition with the usual one. Finally, the main result about the structure of separable Dynkin algebras is formulated and proved: such algebras are represented as set-theoretic unions of maximal Boolean subalgebras. After preliminary preparation, the proof reduces to the application of Zorn’s lemma by the standard scheme.

作者简介

S. Vallander

St. Petersburg State University

编辑信件的主要联系方式.
Email: crazymath@yandex.ru
俄罗斯联邦, Universitetskaya nab. 7/9, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016