Regularity of Solutions to a Model Oblique Derivative Problem for Quasilinear Parabolic Systems with Nondiagonal Principal Matrices
- Autores: Arkhipova A.A.1, Grishina G.V.2
-
Afiliações:
- St. Petersburg State University
- Bauman Moscow State Technical University
- Edição: Volume 52, Nº 1 (2019)
- Páginas: 1-18
- Seção: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/186214
- DOI: https://doi.org/10.3103/S1063454119010023
- ID: 186214
Citar
Resumo
We consider quasilinear parabolic systems of equations with nondiagonal principal matrices. The oblique derivative of a solution is defined on the plane part of the lateral surface of a parabolic cylinder. We do not assume smoothness of the principal matrix and the boundary functions in the time variable and prove partial Hölder continuity of a weak solution near the plane part of the lateral surface of the cylinder. Hölder continuity of weak solutions to the correspondent linear problem is stated. A modification of the A(t)-caloric approximation method is applied to study the regularity of weak solutions.
Palavras-chave
Sobre autores
A. Arkhipova
St. Petersburg State University
Autor responsável pela correspondência
Email: arinaark@gmail.com
Rússia, St. Petersburg, 199034
G. Grishina
Bauman Moscow State Technical University
Autor responsável pela correspondência
Email: galinavg@yandex.ru
Rússia, Moscow, 105005
Arquivos suplementares
