Solving Equations of Free Vibration for a Cylindrical Shell Rotating on Rollers by the Fourier Method


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The small free vibrations of an infinite circular cylindrical shell rotating about its axis at a constant angular velocity are considered. The shell is supported on n absolutely rigid cylindrical rollers equispaced on its circle. The roller-supported shell is a model of an ore benefication centrifugal concentrator with a floating bed. The set of linear differential equations of vibrations is sought in the form of a truncated Fourier series containing N terms along the circumferential coordinate. A system of 2Nn linear homogeneous algebraic equations with 2Nn unknowns is derived for the approximate estimation of vibration frequencies and mode shapes. The frequencies ωk, k = 1, 2, …, 2Nn, are positive roots of the (2Nn)th-order algebraic equation D2) = 0, where D is the determinant of this set. It is shown that the system of 2Nn equations is equivalent to several independent systems with a smaller number of unknowns. As a consequence, the (2Nn)th-order determinant D can be written as a product of lower-order determinants. In particular, the frequencies at N = n are the roots of algebraic equations of an order is lower than 2 and can be found in an explicit form. Some frequency estimation algorithms have been developed for the case of N > n. When N increases, the number of found frequencies also grows, and the frequencies determined at N = n are refined. However, in most cases, the vibration frequencies can not be found for N > n in an explicit form.

About the authors

S. B. Filippov

St. Petersburg State University

Author for correspondence.
Email: s_b_filippov@mail.ru
Russian Federation, St. Petersburg, 199034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Allerton Press, Inc.