Sharp Estimates for Mean Square Approximations of Classes of Differentiable Periodic Functions by Shift Spaces


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let L2 be the space of 2π-periodic square-summable functions and E(f, X)2 be the best approximation of f by the space X in L2. For n ∈ ℕ and BL2, let \({{\Bbb S}_{B,n}}\) be the space of functions s of the form \(s\left( x \right) = \sum\limits_{j = 0}^{2n - 1} {{\beta _j}B\left( {x - \frac{{j\pi }}{n}} \right)} \). This paper describes all spaces \({{\Bbb S}_{B,n}}\) that satisfy the exact inequality \(E{\left( {f,{S_{B,n}}} \right)_2} \leqslant \frac{1}{{^{{n^r}}}}\parallel {f^{\left( r \right)}}{\parallel _2}\). (2n–1)-dimensional subspaces fulfilling the same estimate are specified. Well-known inequalities are for approximation by trigonometric polynomials and splines obtained as special cases.

About the authors

O. L. Vinogradov

St. Petersburg State University

Author for correspondence.
Email: olvin@math.spbu.ru
Russian Federation, Universitetskaya nab. 7–9, St. Petersburg, 199034

A. Yu. Ulitskaya

St. Petersburg State University

Email: olvin@math.spbu.ru
Russian Federation, Universitetskaya nab. 7–9, St. Petersburg, 199034

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Allerton Press, Inc.