Supplement to Hölder’s inequality. II


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Suppose that m ≥ 2, numbers p1, …, pm ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + \cdots + \frac{1}{{{p_m}}} < 1\), and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{ℝ^1}} \right), \cdots ,{\gamma _m} \in {L^{{p_m}}}\left( {{ℝ^1}} \right)\) are given. It is proved that if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both notions were defined by the author for functions in Lp(ℝ1), p ∈ (1, +∞]), then \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\mathop \smallint \limits_a^b \prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]} d\tau } \right| \leqslant C\prod\limits_{k = 1}^m {{{\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|}_{L_{ak}^{pk}\left( {{R^1}} \right)}}} \) where the constant C > 0 is independent of the functions \(\Delta {\gamma _k} \in L_{ak}^{pk}\left( {{ℝ^1}} \right)\)
and \(L_{ak}^{pk}\left( {{ℝ^1}} \right) \subset {L^{pk}}\left( {{ℝ^1}} \right)\), 1 ≤ km, are special normed spaces. A condition for the integral over ℝ1 of a product of functions to be bounded is also given.

作者简介

B. Ivanov

Higher School of Technology and Energy

编辑信件的主要联系方式.
Email: ivanov-bf@yandex.ru
俄罗斯联邦, St. Petersburg, 198095

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017