On the norm property of the Hilbert symbol for polynomial formal modules in a multidimensional local field
- Autores: Volkov V.V.1
-
Afiliações:
- St. Petersburg State University
- Edição: Volume 49, Nº 4 (2016)
- Páginas: 320-324
- Seção: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/185589
- DOI: https://doi.org/10.3103/S1063454116040154
- ID: 185589
Citar
Resumo
In a two-dimensional local field K containing the pth root of unity, a polynomial formal group Fc(X, Y) = X + Y + cXY acting on the maximal ideal M of the ring of integers бK and a constructive Hilbert pairing {·, ·}c: K2(K) × Fc(M) → <ξ>c, where <ξ>c is the module of roots of [p]c (pth degree isogeny of Fc) with respect to formal summation are considered. For the extension of two-dimensional local fields L/K, a norm map of Milnor groups Norm: K2(L) → K2(K) is considered. Its images are called norms in K2(L). The main finding of this study is that the norm property of pairing {·, ·}c: {x,β}c: = 0 ⇔ x is a norm in K2(K([p]c-1(β))), where [p]c-1(β) are the roots of the equation [p]c = β, is checked constructively.
Sobre autores
V. Volkov
St. Petersburg State University
Autor responsável pela correspondência
Email: vladvolkov239@gmail.com
Rússia, Universitetskaya nab. 7/9, St. Petersburg, 199034
Arquivos suplementares
