The arithmetic of hyperbolic formal modules
- 作者: Vostokova R.P.1, Pital’ P.N.2
-
隶属关系:
- Baltic State Technical University
- St. Petersburg State University
- 期: 卷 49, 编号 3 (2016)
- 页面: 224-230
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/185519
- DOI: https://doi.org/10.3103/S1063454116030146
- ID: 185519
如何引用文章
详细
This paper considers hyperbolic formal groups, which come from the elliptic curve theory, in the context of the theory of formal modules. In the first part of the paper, the characteristics of hyperbolic formal groups are considered, i.e., the explicit formulas for the formal logarithm and exponent; their convergence is studied. In the second part, the isogeny and its kernel and height are found; a p-typical logarithm is defined. The Artin–Hasse and Vostokov functions are then constructed; their correctness and main properties are evaluated.
作者简介
R. Vostokova
Baltic State Technical University
编辑信件的主要联系方式.
Email: rvostokova@yandex.ru
俄罗斯联邦, ul. 1-ya Krasnoarmeiskaya 1, St. Petersburg, 190005
P. Pital’
St. Petersburg State University
Email: rvostokova@yandex.ru
俄罗斯联邦, Universitetskaya nab.,7-9, St. Petersburg, 199034
补充文件
