Model studies of THz-range generation via down conversion of the radiation of Ti:Sapphire lasers in LBO crystals


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Results from model studies of the possibility of creating a source of high-power picosecond pulses of terahertz radiation via optical rectification and phase-matched down conversion of femtosecond pulses of Ti:Sapphire lasers in a nonlinear LBO crystal are presented. Modified Sellmeier equations are used in calculations. It is shown that the lengths of coherence for the generation of THz radiation at frequencies higher than 0.5 THz are more than 0.5 mm, allowing the technologically simple production of periodic structures. The maximum length of coherence is achieved for ss type interactions in the XY plane. Phase-matched sf type down conversion is possible only in the XY plane, including noncritical spectral matching conditions. Maximum efficiency can be expected for three-wave interactions with the polarization of interacting waves parallel to Z axis.

Sobre autores

D. Lubenko

Institute of High Current Electronics, Siberian Branch; National Research Tomsk State University

Autor responsável pela correspondência
Email: lubenkodm@gmail.com
Rússia, Tomsk, 634055; Tomsk, 634050

V. Losev

Institute of High Current Electronics, Siberian Branch; National Research Tomsk Polytechnic University

Email: lubenkodm@gmail.com
Rússia, Tomsk, 634055; Tomsk, 634050

Yu. Andreev

National Research Tomsk State University; Institute for the Monitoring of Climatic and Ecological Systems, Siberian Branch

Email: lubenkodm@gmail.com
Rússia, Tomsk, 634050; Tomsk, 634055

G. Lanskii

National Research Tomsk State University; Institute for the Monitoring of Climatic and Ecological Systems, Siberian Branch

Email: lubenkodm@gmail.com
Rússia, Tomsk, 634050; Tomsk, 634055

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2017