Size Dependence of the Surface Tension of Nanoparticles
- Autores: Samsonov V.M.1
-
Afiliações:
- Tver State University
- Edição: Volume 83, Nº 6 (2019)
- Páginas: 784-787
- Seção: Article
- URL: https://journals.rcsi.science/1062-8738/article/view/187433
- DOI: https://doi.org/10.3103/S1062873819060248
- ID: 187433
Citar
Resumo
The linear relationship between surface tension γs and radius \(~{{R}_{{\text{s}}}}\) of small particles (nanoparticles) was derived in the 1960s by Rusanov as \({{{\gamma }}_{{\text{s}}}} = K{{R}_{{\text{s}}}},\) where K is the coefficient of proportionality. In this work, a more generalized dependence is obtained in the context of Gibbs’ theory of thermodynamics for curved interfaces on the same size scales for a randomly selected interface, including an equimolecular surface with radius \({{R}_{{\text{e}}}}{\text{.}}\) It is shown that when \({{R}_{0}} \geqslant R \geqslant {\delta }\) (where \({\delta } = {{R}_{{\text{e}}}} - {{R}_{{\text{s}}}},\)\({{R}_{0}}\) is a characteristic radius limiting the range of the Rusanov equation’s applicability), linear dependence \({\gamma } = KR\) should be valid for all \(R \in \left[ {{{R}_{{\text{s}}}},{{R}_{{\text{e}}}}} \right].\) Parameter \(K~\) is estimated for metal nanodroplets and solid metal nanoparticles as well.
Sobre autores
V. Samsonov
Tver State University
Autor responsável pela correspondência
Email: samsonoff@inbox.ru
Rússia, Tver, 170100
Arquivos suplementares
