Relationship between the structure and physical-mechanical properties of U8A steel subjected to cold plastic deformation by hydrostatic extrusion


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The structure and physical-mechanical properties of U8A high-carbon steel subjected to cold plastic deformation by hydrostatic extrusion have been investigated in a wide range of strain extents. Cold plastic deformation by hydrostatic extrusion has been shown to lead to the dispersion of the structure of U8A high-carbon steel. As the degree of true deformation increases, the ultimate strength and conventional yield limit of U8A steel monotonically grow by 2 and 3.6 times, respectively. Such parameters as coercive force, the number of jumps in magnetic Barkhausen noises, maximum magnetic permeability, residual induction, and the speed of elastic waves are more sensitive to changes in the dislocation density than in the dispersion of the grain and subgrain structure of extruded U8A steel. It has been established that at least two informative testing parameters are needed for nondestructive evaluation of the level of strength properties in extruded U8A steel. Those are coercive force (or maximum magnetic permeability, residual induction, the number of Barkhausen jumps, the speed of elastic waves) for a true deformation of up to 1.62 and the root-mean-square voltage of magnetic Barkhausen noises for true deformations above 1.62.

Об авторах

E. Gorkunov

Institute of Engineering Science, Ural Branch

Автор, ответственный за переписку.
Email: ges@imach.uran.ru
Россия, Yekaterinburg, 620049

S. Zadvorkin

Institute of Engineering Science, Ural Branch

Email: ges@imach.uran.ru
Россия, Yekaterinburg, 620049

L. Goruleva

Institute of Engineering Science, Ural Branch

Email: ges@imach.uran.ru
Россия, Yekaterinburg, 620049

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).