Estimating the efficiency of two algorithms for segmentation of digital radiation images of test objects
- Authors: Vorobeichikov S.E.1, Fokin V.A.2, Udod V.A.1,3, Temnik A.K.3
- 
							Affiliations: 
							- Tomsk State University
- Siberian State Medical University
- Institute of Nondestructive Testing
 
- Issue: Vol 53, No 2 (2017)
- Pages: 134-141
- Section: Radiation Methods
- URL: https://journals.rcsi.science/1061-8309/article/view/181284
- DOI: https://doi.org/10.1134/S1061830917020085
- ID: 181284
Cite item
Abstract
A mathematical model that describes digital radiation images of test objects is presented. Two algorithms are given for automatic segmentation of digital images distorted by additive noises. The efficiency of the algorithms is estimated based on mathematical modeling.
About the authors
S. E. Vorobeichikov
Tomsk State University
							Author for correspondence.
							Email: sev@mail.tsu.ru
				                					                																			                												                	Russian Federation, 							Tomsk, 634050						
V. A. Fokin
Siberian State Medical University
														Email: sev@mail.tsu.ru
				                					                																			                												                	Russian Federation, 							Tomsk, 634055						
V. A. Udod
Tomsk State University; Institute of Nondestructive Testing
														Email: sev@mail.tsu.ru
				                					                																			                												                	Russian Federation, 							Tomsk, 634050; Tomsk, 634050						
A. K. Temnik
Institute of Nondestructive Testing
														Email: sev@mail.tsu.ru
				                					                																			                												                	Russian Federation, 							Tomsk, 634050						
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				 
  
  
  
  
  Email this article
			Email this article  Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					