Efficient Hybrid Descriptor for Face Verification in the Wild Using the Deep Learning Approach


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this work, we propose a novel model-based on a new Deep Hybrid Descriptor learning called DeepGLBSIF (Gabor Local Binarized Statistical Image Feature) for effective extraction and over-complete features in multilayer hierarchy. The typology of our methodology is the same as that of Convolutional Neural Network (CNN) which is one of the intensively-applied deep learning architectures. This field was developed due to: (i) end-to-end learning of the process utilizing a convolutional neural network (CNN), and (ii) the presence of very wide training databases. Our method allows improving the use of the interactions between global and local features for the model, which allowed providing effective and discriminating representations. In our study, the trainable kernels were substituted by our hybrid descriptor GLBSIF. Thus, the developed DeepGLBSIF architecture was efficiently and simply constructed and learned for Face Verification in the Wild. Finally, the classification process was carried out by applying distance measure Cosine and Support Vector Machine (SVM). Our experiments were performed on three large, real-world face datasets: LFW, PubFig and VGGface2. Experimental results demonstrate that our DeepGLBSIF approach provided competitive performance, compared to the others presented in state-of-the-art based on the LFW dataset for facial verification. A public CASIA-WebFace database was utilized in the training step of the introduced approach.

Об авторах

Bilel Ameur

ATMS Advanced Technologies for Medicine and Signals, National Engineering School of Sfax (ENIS),
Sfax University; National Engineering School of Gabes (ENIG), Gabes University

Автор, ответственный за переписку.
Email: bilel.ameur@gmail.com
Тунис, Sfax; Gabes

Mebarka Belahcene

Laboratory of Identification, Command, Control and Communication, Faculty of Science and Technology Mohamed Khider University Biskra

Email: bilel.ameur@gmail.com
Алжир, Biskra

Sabeur Masmoudi

ATMS Advanced Technologies for Medicine and Signals, National Engineering School of Sfax (ENIS),
Sfax University

Email: bilel.ameur@gmail.com
Тунис, Sfax

Ahmed Ben Hamida

ATMS Advanced Technologies for Medicine and Signals, National Engineering School of Sfax (ENIS),
Sfax University

Email: bilel.ameur@gmail.com
Тунис, Sfax

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».