Next Neighbors Addition-Induced Change of 2D Ising Model Critical Parameters
- Авторы: Kryzhanovsky B.V.1, Karandashev I.M.1
-
Учреждения:
- Scientific Research Institute for System Analysis, Russian Academy of Sciences
- Выпуск: Том 28, № 2 (2019)
- Страницы: 89-94
- Раздел: Article
- URL: https://journals.rcsi.science/1060-992X/article/view/195178
- DOI: https://doi.org/10.3103/S1060992X19020073
- ID: 195178
Цитировать
Аннотация
A diagonally connected two-dimensional lattice is the objective of the research. The model draws interest because each of its spins has 6 connects as in a 3D lattice. On the other hand, the planarity of the model allows us to use a strict polynomial algorithm to find its partition function and other characteristics. The Kasteleyn-Fisher algorithm is employed to carry out a computer simulation which enables us to see how the heat capacity behaves with the increasing lattice dimensionality. Given a finite lattice dimensionality, it is impossible to draw a definite conclusion, yet there is every reason to believe that the heat capacity diverges logarithmically at the critical point.
Об авторах
B. Kryzhanovsky
Scientific Research Institute for System Analysis, Russian Academy of Sciences
Email: karandashev@niisi.ras.ru
Россия, Moscow, 117218
I. Karandashev
Scientific Research Institute for System Analysis, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: karandashev@niisi.ras.ru
Россия, Moscow, 117218
Дополнительные файлы
