Next Neighbors Addition-Induced Change of 2D Ising Model Critical Parameters


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A diagonally connected two-dimensional lattice is the objective of the research. The model draws interest because each of its spins has 6 connects as in a 3D lattice. On the other hand, the planarity of the model allows us to use a strict polynomial algorithm to find its partition function and other characteristics. The Kasteleyn-Fisher algorithm is employed to carry out a computer simulation which enables us to see how the heat capacity behaves with the increasing lattice dimensionality. Given a finite lattice dimensionality, it is impossible to draw a definite conclusion, yet there is every reason to believe that the heat capacity diverges logarithmically at the critical point.

Авторлар туралы

B. Kryzhanovsky

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Email: karandashev@niisi.ras.ru
Ресей, Moscow, 117218

I. Karandashev

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: karandashev@niisi.ras.ru
Ресей, Moscow, 117218

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019