Farsi/Arabic handwritten digit recognition using quantum neural networks and bag of visual words method


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Handwritten digit recognition has long been a challenging problem in the field of optical character recognition and of great importance in industry. This paper develops a new approach for handwritten digit recognition that uses a small number of patterns for training phase. To improve performance of isolated Farsi/Arabic handwritten digit recognition, we use Bag of Visual Words (BoVW) technique to construct images feature vectors. Each visual word is described by Scale Invariant Feature Transform (SIFT) method. For learning feature vectors, Quantum Neural Networks (QNN) classifier is used. Experimental results on a very popular Farsi/Arabic handwritten digit dataset (HODA dataset) show that proposed method can achieve the highest recognition rate compared to other state of the arts methods.

Негізгі сөздер

Авторлар туралы

Gholam Montazer

School of Engineering, Department of Information Technology Engineering

Хат алмасуға жауапты Автор.
Email: montazer@modares.ac.ir
Иран, Tehran

Mohammad Soltanshahi

School of Engineering, Department of Information Technology Engineering

Email: montazer@modares.ac.ir
Иран, Tehran

Davar Giveki

School of Engineering, Department of Information Technology Engineering

Email: montazer@modares.ac.ir
Иран, Tehran

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2017