Exponential Discretization of Weights of Neural Network Connections in Pre-Trained Neural Networks


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To reduce random access memory (RAM) requirements and to increase speed of recognition algorithms we consider a weight discretization problem for trained neural networks. We show that an exponential discretization is preferable to a linear discretization since it allows one to achieve the same accuracy when the number of bits is 1 or 2 less. The quality of the neural network VGG-16 is already satisfactory (top5 accuracy 69%) in the case of 3 bit exponential discretization. The ResNet50 neural network shows top5 accuracy 84% at 4 bits. Other neural networks perform fairly well at 5 bits (top5 accuracies of Xception, Inception-v3, and MobileNet-v2 top5 were 87%, 90%, and 77%, respectively). At less number of bits, the accuracy decreases rapidly.

Sobre autores

M. Malsagov

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: malsagov@niisi.ras.ru
Rússia, Moscow, 117218

E. Khayrov

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: emil.khayrov@gmail.com
Rússia, Moscow, 117218

M. Pushkareva

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Autor responsável pela correspondência
Email: mariaratko@gmail.com
Rússia, Moscow, 117218

I. Karandashev

Scientific Research Institute for System Analysis, Russian Academy of Sciences; Peoples Friendship University of Russia (RUDN University Moscow)

Autor responsável pela correspondência
Email: karandashev@niisi.ras.ru
Rússia, Moscow, 117218; Moscow, 117198

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019