Exponential Discretization of Weights of Neural Network Connections in Pre-Trained Neural Networks


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

To reduce random access memory (RAM) requirements and to increase speed of recognition algorithms we consider a weight discretization problem for trained neural networks. We show that an exponential discretization is preferable to a linear discretization since it allows one to achieve the same accuracy when the number of bits is 1 or 2 less. The quality of the neural network VGG-16 is already satisfactory (top5 accuracy 69%) in the case of 3 bit exponential discretization. The ResNet50 neural network shows top5 accuracy 84% at 4 bits. Other neural networks perform fairly well at 5 bits (top5 accuracies of Xception, Inception-v3, and MobileNet-v2 top5 were 87%, 90%, and 77%, respectively). At less number of bits, the accuracy decreases rapidly.

Авторлар туралы

M. Malsagov

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: malsagov@niisi.ras.ru
Ресей, Moscow, 117218

E. Khayrov

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: emil.khayrov@gmail.com
Ресей, Moscow, 117218

M. Pushkareva

Scientific Research Institute for System Analysis, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: mariaratko@gmail.com
Ресей, Moscow, 117218

I. Karandashev

Scientific Research Institute for System Analysis, Russian Academy of Sciences; Peoples Friendship University of Russia (RUDN University Moscow)

Хат алмасуға жауапты Автор.
Email: karandashev@niisi.ras.ru
Ресей, Moscow, 117218; Moscow, 117198

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019