Review of State-of-the-Art in Deep Learning Artificial Intelligence


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The current state-of-the-art in Deep Learning (DL) based artificial intelligence (AI) is reviewed. A special emphasis is made to compare the level of a concrete AI system with human abilities to show what remains to be done to achieve human level AI. Several estimates are proposed for comparison of the current “intellectual level” of AI systems with the human level. Among them is relation of Shannon’s estimate for lower bound on human word perplexity to recent progress in natural language AI modeling. Relations between the operation of DL constructions and principles of live neural information processing are discussed. The problem of AI risks and benefits is also reviewed based on arguments from both sides.

Авторлар туралы

V. Shakirov

Scientific Research Institute of System Analysis; Moscow Institute of Physics and Technology

Email: wldbar@gmail.com
Ресей, Moscow; Moscow

K. Solovyeva

Scientific Research Institute of System Analysis; Moscow Institute of Physics and Technology

Email: wldbar@gmail.com
Ресей, Moscow; Moscow

W. Dunin-Barkowski

Scientific Research Institute of System Analysis; Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: wldbar@gmail.com
Ресей, Moscow; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2018