Fuzzy Analysis and Deep Convolution Neural Networks in Still-to-video Recognition


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We discuss the video classification problem with the matching of feature vectors extracted using deep convolutional neural networks from each frame. We propose the novel recognition method based on representation of each frame as a sequence of fuzzy sets of reference classes whose degrees of membership are defined based on asymptotic distribution of the Kullback–Leibler information divergence and its relation with the maximum likelihood method. In order to increase the classification accuracy, we perform the fuzzy intersection (product triangular norms) of these sets. Experimental study with YTF (YouTube Faces) and IJB-A (IARPA Janus Benchmark A) video datasets and VGGFace, ResFace and LightCNN descriptors shows that the proposed approach allows us to increase the accuracy of recognition by 2–6% comparing with the known classification methods.

Авторлар туралы

A. Savchenko

National Research University Higher School of Economics

Хат алмасуға жауапты Автор.
Email: avsavchenko@hse.ru
Ресей, Nizhny Novgorod

N. Belova

National Research University Higher School of Economics

Email: avsavchenko@hse.ru
Ресей, Moscow

L. Savchenko

National Research University Higher School of Economics; Nizhny Novgorod State Linguistic University

Email: avsavchenko@hse.ru
Ресей, Nizhny Novgorod; Nizhny Novgorod

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2018