Fast online algorithm for nonlinear support vector machines and other alike models


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Paper presents a unique novel online learning algorithm for eight popular nonlinear (i.e., kernel), classifiers based on a classic stochastic gradient descent in primal domain. In particular, the online learning algorithm is derived for following classifiers: L1 and L2 support vector machines with both a quadratic regularizer wtw and the l1 regularizer |w|1; regularized huberized hinge loss; regularized kernel logistic regression; regularized exponential loss with l1 regularizer |w|1 and Least squares support vector machines. The online learning algorithm is aimed primarily for designing classifiers for large datasets. The novel learning model is accurate, fast and extremely simple (i.e., comprised of few coding lines only). Comparisons of performances of the proposed algorithm with the state of the art support vector machine algorithm on few real datasets are shown.

作者简介

Vojislav Kecman

Computer Science Department

编辑信件的主要联系方式.
Email: vkecman@vcu.edu
美国, Richmond, VA

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016