Development and investigation of a hierarchical compression algorithm for storing hyperspectral images
- Autores: Gashnikov M.V.1, Glumov N.I.1
- 
							Afiliações: 
							- Samara National Research University
 
- Edição: Volume 25, Nº 3 (2016)
- Páginas: 168-179
- Seção: Article
- URL: https://journals.rcsi.science/1060-992X/article/view/194890
- DOI: https://doi.org/10.3103/S1060992X16030024
- ID: 194890
Citar
Resumo
The characteristics of SpecTIR and AVIRIS 16-bit hyperspectral images are analyzed. The requirements for compression of such images are formulated. The aspects of using the hierarchical compression algorithm in hyperspectral images storage are studied. Spectral component approximation algorithms are considered that allow both an increased compression ratio and retrieval of particular components. Interpolation algorithms are considered and a rank interpolator is offered for hyperspectral images compression. Real 16-bit hyperspectral images are used in computational experiments to investigate the efficiency of the proposed algorithms. The best parameters of these algorithms are found experimentally and general recommendations on how to tune the proposed hierarchical compression algorithm to suit hyperspectral images storage problems are given.
Sobre autores
M. Gashnikov
Samara National Research University
							Autor responsável pela correspondência
							Email: mih-fastt@yandex.ru
				                					                																			                												                	Rússia, 							Samara						
N. Glumov
Samara National Research University
														Email: mih-fastt@yandex.ru
				                					                																			                												                	Rússia, 							Samara						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					