Structure Choice for Relations between Objects in Metric Classification Algorithms


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We analyze the cluster structure of learning samples, decomposing class objects into disjoint groups. Decomposition results are used for the computation of the compactness measure for the sample and its minimal coverage by standard objects. We show that the number of standard objects depends on the metric choice, the distance to noise objects, the scales of the feature measurements, and nonlinear transformations of the feature space. We experimentally prove that the set of standards of the minimal coverage and noise objects affect the algorithm generalizing ability.

Sobre autores

N. Ignatyev

Uzbekistan National University

Autor responsável pela correspondência
Email: n_ignatev@rambler.ru
Uzbequistão, Vuzgorodok 4, Tashkent, 100174

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018