An Efficient Human Activity Recognition Technique Based on Deep Learning


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we present a new deep learning-based human activity recognition technique. First, we track and extract human body from each frame of the video stream. Next, we abstract human silhouettes and use them to create binary space-time maps (BSTMs) which summarize human activity within a defined time interval. Finally, we use convolutional neural network (CNN) to extract features from BSTMs and classify the activities. To evaluate our approach, we carried out several tests using three public datasets: Weizmann, Keck Gesture and KTH Database. Experimental results show that our technique outperforms conventional state-of-the-art methods in term of recognition accuracy and provides comparable performance against recent deep learning techniques. It’s simple to implement, requires less computing power, and can be used for multi-subject activity recognition.

作者简介

A. Khelalef

Laboratoire d’Automatique Avancée et d’Analyse des Systèmes (LAAAS), University Batna-2

编辑信件的主要联系方式.
Email: Khelalef_aziz@yahoo.fr
阿尔及利亚, Batna

F. Ababsa

Ecole Nationale d’Arts et Métiers, Institut image-Le2i

编辑信件的主要联系方式.
Email: fakhreddine.ababsa@ensam.eu
法国, Paris

N. Benoudjit

Laboratoire d’Automatique Avancée et d’Analyse des Systèmes (LAAAS), University Batna-2

编辑信件的主要联系方式.
Email: n.benoudjit@univ-batna2.dz
阿尔及利亚, Batna

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019