A Lightweight Network Based on Pyramid Residual Module for Human Pose Estimation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The human pose estimation is one of the most popular research fields. Its current accuracy is satisfactory in some cases, however, there exists a challenge for practical application due to the limited memory and computational efficiency in FPGAs and other hardware. We propose a lightweight module based on the pyramid residual module in this work. We change the convolution mode by using the depth-wise separable convolutions structure. Meanwhile, the channel split module and channel shuffle module are added to change the feature graph dimension. As a result, the parameters of the network are reduced effectively. We test the network on standard benchmarks MPII dataset, our method reduces about 50% of the training storage space while maintaining comparable accuracy. The complexity is simplified from 9 GFLOPs to 3 GFLOPs.

Авторлар туралы

Bingkun Gao

School of Electrical and Information Engineering, Northeast Petroleum University

Хат алмасуға жауапты Автор.
Email: bkgao@126.com
ҚХР, Daqing

Ke Ma

School of Electrical and Information Engineering, Northeast Petroleum University

Хат алмасуға жауапты Автор.
Email: make098@126.com
ҚХР, Daqing

Hongbo Bi

School of Electrical and Information Engineering, Northeast Petroleum University

Хат алмасуға жауапты Автор.
Email: bhbdq@126.com
ҚХР, Daqing

Ling Wang

School of Electrical and Information Engineering, Northeast Petroleum University

Хат алмасуға жауапты Автор.
Email: 1024573821@qq.com
ҚХР, Daqing

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019