Construction of a Class of Logistic Chaotic Measurement Matrices for Compressed Sensing


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The construction of the measurement matrix is the key technology for accurate recovery of compressed sensing. In this paper, we demonstrated correlation properties of nonpiecewise and piecewise logistic chaos system to follow Gaussian distribution. The correlation properties can generate a class of logistic chaotic measurement matrices with simple structure, easy hardware implementation and ideal measurement efficiency. Specifically, spread spectrum sequences generated by the correlation properties follow Gaussian distribution. Thus, the proposed algorithm constructs chaos-Gaussian matrices by the sequences. Simulation results of one-dimensional signals and two-dimensional images show that chaos-Gaussian measurement matrices can provide comparable performance against common random measurement matrices. In addition, chaos-Gaussian matrices are deterministic measurement matrices.

Авторлар туралы

Xiaoxue Kong

School of Electrical and Information Engineering, Northeast Petroleum University

Email: wdskxx@126.com
ҚХР, Daqing

Hongbo Bi

School of Electrical and Information Engineering, Northeast Petroleum University

Хат алмасуға жауапты Автор.
Email: wdskxx@126.com
ҚХР, Daqing

Di Lu

School of Electrical and Information Engineering, Northeast Petroleum University

Email: wdskxx@126.com
ҚХР, Daqing

Ning Li

School of Electrical and Information Engineering, Northeast Petroleum University

Email: wdskxx@126.com
ҚХР, Daqing

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019