A robust statistical set of features for Amazigh handwritten characters


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The main problem in the handwritten character recognition systems (HCR) is to describe each character by a set of features that can distinguish it from the other characters. Thus, in this paper, we propose a robust set of features extracted from isolated Amazigh characters based on decomposing the character image into zones and calculate the density and the total length of the histogram projection in each zone. In the experimental evaluation, we test the proposed set of features, to show its performance, with different classification algorithms on a large database of handwritten Amazigh characters. The obtained results give recognition rates that reach 99.03% which we presume good and satisfactory compared to other approaches and show that our proposed set of features is useful to describe the Amazigh characters.

Авторлар туралы

N. Aharrane

Computer sciences, Imaging and Numerical Analysis Laboratory (LIIAN) USMBA University

Хат алмасуға жауапты Автор.
Email: aharranenabil@gmail.com
Марокко, Fez

A. Dahmouni

Computer sciences, Imaging and Numerical Analysis Laboratory (LIIAN) USMBA University

Email: aharranenabil@gmail.com
Марокко, Fez

K. El Moutaouakil

Computer sciences, Imaging and Numerical Analysis Laboratory (LIIAN) USMBA University

Email: aharranenabil@gmail.com
Марокко, Fez

K. Satori

Computer sciences, Imaging and Numerical Analysis Laboratory (LIIAN) USMBA University

Email: aharranenabil@gmail.com
Марокко, Fez

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017