Semantic volume segmentation with iterative context integration for bio-medical image stacks


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Automatic recognition of biological structures like membranes or synapses is important to analyze organic processes and to understand their functional behavior. To achieve this, volumetric images taken by electron microscopy or computer tomography have to be segmented into meaningful semantic regions. We are extending iterative context forests which were developed for 2D image data to image stack segmentation. In particular, our method is able to learn high-order dependencies and import contextual information, which often can not be learned by conventional Markov random field approaches usually used for this task. Our method is tested on very different and challenging medical and biological segmentation tasks.

Авторлар туралы

S. Sickert

Computer Vision Group

Хат алмасуға жауапты Автор.
Email: sven.sickert@uni-jena.de
Германия, Jena, 07743

E. Rodner

Computer Vision Group

Email: sven.sickert@uni-jena.de
Германия, Jena, 07743

J. Denzler

Computer Vision Group

Email: sven.sickert@uni-jena.de
Германия, Jena, 07743

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016