Predictive Diagnosis of Glaucoma Based on Analysis of Focal Notching along the Neuro-Retinal Rim Using Machine Learning


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Automatic evaluation of the retinal fundus image is regarded as one of the most important future tools for early detection and treatment of progressive eye diseases like glaucoma. Glaucoma leads to progressive degeneration of vision which is characterized by shape deformation of the optic cup associated with focal notching, wherein the degeneration of the blood vessels results in the formation of a notch along the neuroretinal rim. In this study, we have developed a methodology for automated prediction of glaucoma based on feature analysis of the focal notching along the neuroretinal rim and cup to disc ratio values. This procedure has three phases: the first phase segments the optic disc and cup by suppressing the blood vessels with dynamic thresholding; the second phase computes the neuroretinal rim width to detect the presence and direction of notching by the conventional ISNT rule apart from calculating the cup-to-disc ratio from the color fundus image (CFI); the third phase uses linear support vector based machine learning algorithm by integrating extracted parameters as features for classification of CFIs into glaucomatous or normal. The algorithm outputs have been evaluated on a freely available database of 101 images, each marked with decision of five glaucoma expert ophthalmologists, thereby returning an accuracy rate of 87.128%.

About the authors

Rishav Mukherjee

Department of Electronics and Communication Engineering, Heritage Institute of Technology

Author for correspondence.
Email: rishavmukherjee17@gmail.com
India, Kolkata

Shamik Kundu

Department of Electronics and Communication Engineering, Heritage Institute of Technology

Email: rishavmukherjee17@gmail.com
India, Kolkata

Kaushik Dutta

Department of Electronics and Communication Engineering, Heritage Institute of Technology

Email: rishavmukherjee17@gmail.com
India, Kolkata

Anindya Sen

Department of Electronics and Communication Engineering, Heritage Institute of Technology

Email: rishavmukherjee17@gmail.com
India, Kolkata

Somnath Majumdar

Department of Ophthalmology, Apollo Gleneagles Hospital

Email: rishavmukherjee17@gmail.com
India, Kolkata

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.